Julia Dieter, Friederike Dominick, Alexander Knurr, Janko Ahlbrandt, Frank Ückert
{"title":"改进患者-试验匹配的非结构化肿瘤研究资格标准分析。","authors":"Julia Dieter, Friederike Dominick, Alexander Knurr, Janko Ahlbrandt, Frank Ückert","doi":"10.1055/s-0041-1724107","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Higher enrolment rates of cancer patients into clinical trials are necessary to increase cancer survival. As a prerequisite, an improved semiautomated matching of patient characteristics with clinical trial eligibility criteria is needed. This is based on the computer interpretability, i.e., structurability of eligibility criteria texts. To increase structurability, the common content, phrasing, and structuring problems of oncological eligibility criteria need to be better understood.</p><p><strong>Objectives: </strong> We aimed to identify oncological eligibility criteria that were not possible to be structured by our manual approach and categorize them by the underlying structuring problem. Our results shall contribute to improved criteria phrasing in the future as a prerequisite for increased structurability.</p><p><strong>Methods: </strong> The inclusion and exclusion criteria of 159 oncological studies from the Clinical Trial Information System of the National Center for Tumor Diseases Heidelberg were manually structured and grouped into content-related subcategories. Criteria identified as not structurable were analyzed further and manually categorized by the underlying structuring problem.</p><p><strong>Results: </strong> The structuring of criteria resulted in 4,742 smallest meaningful components (SMCs) distributed across seven main categories (Diagnosis, Therapy, Laboratory, Study, Findings, Demographics, and Lifestyle, Others). A proportion of 645 SMCs (13.60%) was not possible to be structured due to content- and structure-related issues. Of these, a subset of 415 SMCs (64.34%) was considered not remediable, as supplementary medical knowledge would have been needed or the linkage among the sentence components was too complex. The main category \"Diagnosis and Study\" contained these two subcategories to the largest parts and thus were the least structurable. In the inclusion criteria, reasons for lacking structurability varied, while missing supplementary medical knowledge was the largest factor within the exclusion criteria.</p><p><strong>Conclusion: </strong> Our results suggest that further improvement of eligibility criterion phrasing only marginally contributes to increased structurability. Instead, physician-based confirmation of the matching results and the exclusion of factors harming the patient or biasing the study is needed.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"60 1-02","pages":"9-20"},"PeriodicalIF":1.3000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/s-0041-1724107","citationCount":"1","resultStr":"{\"title\":\"Analysis of Not Structurable Oncological Study Eligibility Criteria for Improved Patient-Trial Matching.\",\"authors\":\"Julia Dieter, Friederike Dominick, Alexander Knurr, Janko Ahlbrandt, Frank Ückert\",\"doi\":\"10.1055/s-0041-1724107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong> Higher enrolment rates of cancer patients into clinical trials are necessary to increase cancer survival. As a prerequisite, an improved semiautomated matching of patient characteristics with clinical trial eligibility criteria is needed. This is based on the computer interpretability, i.e., structurability of eligibility criteria texts. To increase structurability, the common content, phrasing, and structuring problems of oncological eligibility criteria need to be better understood.</p><p><strong>Objectives: </strong> We aimed to identify oncological eligibility criteria that were not possible to be structured by our manual approach and categorize them by the underlying structuring problem. Our results shall contribute to improved criteria phrasing in the future as a prerequisite for increased structurability.</p><p><strong>Methods: </strong> The inclusion and exclusion criteria of 159 oncological studies from the Clinical Trial Information System of the National Center for Tumor Diseases Heidelberg were manually structured and grouped into content-related subcategories. Criteria identified as not structurable were analyzed further and manually categorized by the underlying structuring problem.</p><p><strong>Results: </strong> The structuring of criteria resulted in 4,742 smallest meaningful components (SMCs) distributed across seven main categories (Diagnosis, Therapy, Laboratory, Study, Findings, Demographics, and Lifestyle, Others). A proportion of 645 SMCs (13.60%) was not possible to be structured due to content- and structure-related issues. Of these, a subset of 415 SMCs (64.34%) was considered not remediable, as supplementary medical knowledge would have been needed or the linkage among the sentence components was too complex. The main category \\\"Diagnosis and Study\\\" contained these two subcategories to the largest parts and thus were the least structurable. In the inclusion criteria, reasons for lacking structurability varied, while missing supplementary medical knowledge was the largest factor within the exclusion criteria.</p><p><strong>Conclusion: </strong> Our results suggest that further improvement of eligibility criterion phrasing only marginally contributes to increased structurability. Instead, physician-based confirmation of the matching results and the exclusion of factors harming the patient or biasing the study is needed.</p>\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\"60 1-02\",\"pages\":\"9-20\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1055/s-0041-1724107\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1724107\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0041-1724107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Analysis of Not Structurable Oncological Study Eligibility Criteria for Improved Patient-Trial Matching.
Background: Higher enrolment rates of cancer patients into clinical trials are necessary to increase cancer survival. As a prerequisite, an improved semiautomated matching of patient characteristics with clinical trial eligibility criteria is needed. This is based on the computer interpretability, i.e., structurability of eligibility criteria texts. To increase structurability, the common content, phrasing, and structuring problems of oncological eligibility criteria need to be better understood.
Objectives: We aimed to identify oncological eligibility criteria that were not possible to be structured by our manual approach and categorize them by the underlying structuring problem. Our results shall contribute to improved criteria phrasing in the future as a prerequisite for increased structurability.
Methods: The inclusion and exclusion criteria of 159 oncological studies from the Clinical Trial Information System of the National Center for Tumor Diseases Heidelberg were manually structured and grouped into content-related subcategories. Criteria identified as not structurable were analyzed further and manually categorized by the underlying structuring problem.
Results: The structuring of criteria resulted in 4,742 smallest meaningful components (SMCs) distributed across seven main categories (Diagnosis, Therapy, Laboratory, Study, Findings, Demographics, and Lifestyle, Others). A proportion of 645 SMCs (13.60%) was not possible to be structured due to content- and structure-related issues. Of these, a subset of 415 SMCs (64.34%) was considered not remediable, as supplementary medical knowledge would have been needed or the linkage among the sentence components was too complex. The main category "Diagnosis and Study" contained these two subcategories to the largest parts and thus were the least structurable. In the inclusion criteria, reasons for lacking structurability varied, while missing supplementary medical knowledge was the largest factor within the exclusion criteria.
Conclusion: Our results suggest that further improvement of eligibility criterion phrasing only marginally contributes to increased structurability. Instead, physician-based confirmation of the matching results and the exclusion of factors harming the patient or biasing the study is needed.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.