{"title":"优质单分子DNA底物的高产量纯化。","authors":"Yue Lu, Piero Bianco","doi":"10.14440/jbm.2021.350","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule studies involving DNA or RNA, require homogeneous preparations of nucleic acid substrates of exceptional quality. Over the past several years, a variety of methods have been published describing different purification methods but these are frustratingly inconsistent with variable yields even in the hands of experienced bench scientists. To address these issues, we present an optimized and straightforward, column-based approach that is reproducible and produces high yields of substrates or substrate components of exceptional quality. Central to the success of the method presented is the use of a non-porous anion exchange resin. In addition to the use of this resin, we encourage the optimization of each step in the construction of substrates. The fully optimized method produces high yields of a hairpin DNA substrate of exceptional quality. While this substrate is suitable for single-molecule, magnetic tweezer experiments, the described method is readily adaptable to the production of DNA substrates for the majority of single-molecule studies involving nucleic acids ranging in size from 70-15000 bp.</p>","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"8 1","pages":"e145"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/cd/jbm-8-1-e145.PMC8054919.pdf","citationCount":"1","resultStr":"{\"title\":\"High-yield purification of exceptional-quality, single-molecule DNA substrates.\",\"authors\":\"Yue Lu, Piero Bianco\",\"doi\":\"10.14440/jbm.2021.350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-molecule studies involving DNA or RNA, require homogeneous preparations of nucleic acid substrates of exceptional quality. Over the past several years, a variety of methods have been published describing different purification methods but these are frustratingly inconsistent with variable yields even in the hands of experienced bench scientists. To address these issues, we present an optimized and straightforward, column-based approach that is reproducible and produces high yields of substrates or substrate components of exceptional quality. Central to the success of the method presented is the use of a non-porous anion exchange resin. In addition to the use of this resin, we encourage the optimization of each step in the construction of substrates. The fully optimized method produces high yields of a hairpin DNA substrate of exceptional quality. While this substrate is suitable for single-molecule, magnetic tweezer experiments, the described method is readily adaptable to the production of DNA substrates for the majority of single-molecule studies involving nucleic acids ranging in size from 70-15000 bp.</p>\",\"PeriodicalId\":73618,\"journal\":{\"name\":\"Journal of biological methods\",\"volume\":\"8 1\",\"pages\":\"e145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/cd/jbm-8-1-e145.PMC8054919.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14440/jbm.2021.350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2021.350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
High-yield purification of exceptional-quality, single-molecule DNA substrates.
Single-molecule studies involving DNA or RNA, require homogeneous preparations of nucleic acid substrates of exceptional quality. Over the past several years, a variety of methods have been published describing different purification methods but these are frustratingly inconsistent with variable yields even in the hands of experienced bench scientists. To address these issues, we present an optimized and straightforward, column-based approach that is reproducible and produces high yields of substrates or substrate components of exceptional quality. Central to the success of the method presented is the use of a non-porous anion exchange resin. In addition to the use of this resin, we encourage the optimization of each step in the construction of substrates. The fully optimized method produces high yields of a hairpin DNA substrate of exceptional quality. While this substrate is suitable for single-molecule, magnetic tweezer experiments, the described method is readily adaptable to the production of DNA substrates for the majority of single-molecule studies involving nucleic acids ranging in size from 70-15000 bp.