Sofiya Shaikh, Hemil Patel, Debes Ray, Vinod K Aswal, Rakesh K Sharma
{"title":"抗惊厥药物拉莫三嗪的混合波洛沙姆纳米胶束:溶解度、胶束表征和体外释放研究。","authors":"Sofiya Shaikh, Hemil Patel, Debes Ray, Vinod K Aswal, Rakesh K Sharma","doi":"10.1166/jnn.2021.19490","DOIUrl":null,"url":null,"abstract":"<p><p>Recently the applications of Poloxamers in drug development is promising as it facilitated the drug molecule for delivering to the correct place, at the correct time and in the correct amount. Poloxamers can form nanomicelles to encapsulate hydrophobic drugs in order to increase solubility, stability and facilitate delivery at target. In this context, the solubilization of anticonvulsant lamotrigine (LMN) drug in a chain of Poloxamers containing different polyethylene oxide and polypropylene oxide noieties were examined. The results showed better solubilization of LMN in Poloxamers contain low CMTs while poor with Poloxamers having high CMTs. Systematic investigation of two mixed Poloxamer nanomicelles (P407:P403 and P407:P105) for LMN bioavailability at body temperature (37 °C) were investigated. The solubility of LMN was enhanced in mixed P407:P403 nanomicelles with the amount of P403 and reduced in mixed P407:P105 nanomicelles with the amount of P105. LMN encapsulated mixed Poloxamer nanomicelles were found spherical in shape with ~25 nm D<sub>h</sub> sizes. The <i>In-Vitro</i> release profiles of mixed Poloxamer nanomicelles demonstrated the biphasic model with initial burst release and then slowly release of LMN. Better biocompatibility of LMN in the mixed P407:P403 nanomicelles was confirmed with stability data. The results of this work were proven the mixed P407:P403 nanomicelles as efficient nanocarriers for LMN.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5723-5735"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mixed Poloxamer Nanomicelles for the Anticonvulsant Lamotrigine Drug: Solubility, Micellar Characterization, and <i>In-Vitro</i> Release Studies.\",\"authors\":\"Sofiya Shaikh, Hemil Patel, Debes Ray, Vinod K Aswal, Rakesh K Sharma\",\"doi\":\"10.1166/jnn.2021.19490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently the applications of Poloxamers in drug development is promising as it facilitated the drug molecule for delivering to the correct place, at the correct time and in the correct amount. Poloxamers can form nanomicelles to encapsulate hydrophobic drugs in order to increase solubility, stability and facilitate delivery at target. In this context, the solubilization of anticonvulsant lamotrigine (LMN) drug in a chain of Poloxamers containing different polyethylene oxide and polypropylene oxide noieties were examined. The results showed better solubilization of LMN in Poloxamers contain low CMTs while poor with Poloxamers having high CMTs. Systematic investigation of two mixed Poloxamer nanomicelles (P407:P403 and P407:P105) for LMN bioavailability at body temperature (37 °C) were investigated. The solubility of LMN was enhanced in mixed P407:P403 nanomicelles with the amount of P403 and reduced in mixed P407:P105 nanomicelles with the amount of P105. LMN encapsulated mixed Poloxamer nanomicelles were found spherical in shape with ~25 nm D<sub>h</sub> sizes. The <i>In-Vitro</i> release profiles of mixed Poloxamer nanomicelles demonstrated the biphasic model with initial burst release and then slowly release of LMN. Better biocompatibility of LMN in the mixed P407:P403 nanomicelles was confirmed with stability data. The results of this work were proven the mixed P407:P403 nanomicelles as efficient nanocarriers for LMN.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 11\",\"pages\":\"5723-5735\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed Poloxamer Nanomicelles for the Anticonvulsant Lamotrigine Drug: Solubility, Micellar Characterization, and In-Vitro Release Studies.
Recently the applications of Poloxamers in drug development is promising as it facilitated the drug molecule for delivering to the correct place, at the correct time and in the correct amount. Poloxamers can form nanomicelles to encapsulate hydrophobic drugs in order to increase solubility, stability and facilitate delivery at target. In this context, the solubilization of anticonvulsant lamotrigine (LMN) drug in a chain of Poloxamers containing different polyethylene oxide and polypropylene oxide noieties were examined. The results showed better solubilization of LMN in Poloxamers contain low CMTs while poor with Poloxamers having high CMTs. Systematic investigation of two mixed Poloxamer nanomicelles (P407:P403 and P407:P105) for LMN bioavailability at body temperature (37 °C) were investigated. The solubility of LMN was enhanced in mixed P407:P403 nanomicelles with the amount of P403 and reduced in mixed P407:P105 nanomicelles with the amount of P105. LMN encapsulated mixed Poloxamer nanomicelles were found spherical in shape with ~25 nm Dh sizes. The In-Vitro release profiles of mixed Poloxamer nanomicelles demonstrated the biphasic model with initial burst release and then slowly release of LMN. Better biocompatibility of LMN in the mixed P407:P403 nanomicelles was confirmed with stability data. The results of this work were proven the mixed P407:P403 nanomicelles as efficient nanocarriers for LMN.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.