在平行设计的生物等效性试验中,借用实际数据的功率先验。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-05-06 DOI:10.1515/ijb-2020-0119
Lei Huang, Liwen Su, Yuling Zheng, Yuanyuan Chen, Fangrong Yan
{"title":"在平行设计的生物等效性试验中,借用实际数据的功率先验。","authors":"Lei Huang,&nbsp;Liwen Su,&nbsp;Yuling Zheng,&nbsp;Yuanyuan Chen,&nbsp;Fangrong Yan","doi":"10.1515/ijb-2020-0119","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, real-world study has attracted wide attention for drug development. In bioequivalence study, the reference drug often has been marketed for many years and accumulated abundant real-world data. It is therefore appealing to incorporate these data in the design to improve trial efficiency. In this paper, we propose a Bayesian method to include real-world data of the reference drug in a current bioequivalence trial, with the aim to increase the power of analysis and reduce sample size for long half-life drugs. We adopt the power prior method for incorporating real-world data and use the average bioequivalence posterior probability to evaluate the bioequivalence between the test drug and the reference drug. Simulations were conducted to investigate the performance of the proposed method in different scenarios. The simulation results show that the proposed design has higher power than the traditional design without borrowing real-world data, while controlling the type I error. Moreover, the proposed method saves sample size and reduces costs for the trial.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power prior for borrowing the real-world data in bioequivalence test with a parallel design.\",\"authors\":\"Lei Huang,&nbsp;Liwen Su,&nbsp;Yuling Zheng,&nbsp;Yuanyuan Chen,&nbsp;Fangrong Yan\",\"doi\":\"10.1515/ijb-2020-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, real-world study has attracted wide attention for drug development. In bioequivalence study, the reference drug often has been marketed for many years and accumulated abundant real-world data. It is therefore appealing to incorporate these data in the design to improve trial efficiency. In this paper, we propose a Bayesian method to include real-world data of the reference drug in a current bioequivalence trial, with the aim to increase the power of analysis and reduce sample size for long half-life drugs. We adopt the power prior method for incorporating real-world data and use the average bioequivalence posterior probability to evaluate the bioequivalence between the test drug and the reference drug. Simulations were conducted to investigate the performance of the proposed method in different scenarios. The simulation results show that the proposed design has higher power than the traditional design without borrowing real-world data, while controlling the type I error. Moreover, the proposed method saves sample size and reduces costs for the trial.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0119\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,现实世界的研究引起了药物开发的广泛关注。在生物等效性研究中,参比药物往往已经上市多年,积累了丰富的实际数据。因此,将这些数据纳入设计以提高审判效率是有吸引力的。在本文中,我们提出了一种贝叶斯方法来纳入当前生物等效性试验中参考药物的真实数据,旨在提高分析能力并减少长半衰期药物的样本量。我们采用功率先验法结合实际数据,并使用平均生物等效性后验概率来评价试验药物与参比药物之间的生物等效性。通过仿真研究了该方法在不同场景下的性能。仿真结果表明,在不借用实际数据的情况下,该设计比传统设计具有更高的功率,同时控制了I型误差。此外,该方法节省了样本量,降低了试验成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power prior for borrowing the real-world data in bioequivalence test with a parallel design.

Recently, real-world study has attracted wide attention for drug development. In bioequivalence study, the reference drug often has been marketed for many years and accumulated abundant real-world data. It is therefore appealing to incorporate these data in the design to improve trial efficiency. In this paper, we propose a Bayesian method to include real-world data of the reference drug in a current bioequivalence trial, with the aim to increase the power of analysis and reduce sample size for long half-life drugs. We adopt the power prior method for incorporating real-world data and use the average bioequivalence posterior probability to evaluate the bioequivalence between the test drug and the reference drug. Simulations were conducted to investigate the performance of the proposed method in different scenarios. The simulation results show that the proposed design has higher power than the traditional design without borrowing real-world data, while controlling the type I error. Moreover, the proposed method saves sample size and reduces costs for the trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1