Kevin D Orner, Pablo K Cornejo, Daniel Rojas Camacho, Marisol Alvarez, Fabricio Camacho-Céspedes
{"title":"通过资源回收提高边缘化农业社区动物粪便管理的生命周期经济和环境可持续性。","authors":"Kevin D Orner, Pablo K Cornejo, Daniel Rojas Camacho, Marisol Alvarez, Fabricio Camacho-Céspedes","doi":"10.1089/ees.2020.0262","DOIUrl":null,"url":null,"abstract":"<p><p>A growing world population with increasing levels of food consumption will lead to more dairy and swine production and increasing amount of manure that requires treatment. Discharge of excessive nutrients and carbon in untreated animal manure can lead to greenhouse gas emissions and eutrophication concerns, and treatment efforts can be expensive for small scale farmers in marginalized communities. The overall goal of this study was to determine the environmental and economic sustainability of four animal manure management scenarios in Costa Rica: (1) no treatment, (2) biodigesters, (3) biodigesters and struvite precipitation, and (4) biodigesters, struvite precipitation, and lagoons. Life cycle assessment was used to assess the carbon footprint and eutrophication potential, whereas life cycle cost analysis was used to evaluate the equivalent uniform annual worth over the construction and operation and maintenance life stages. Recovery of biogas as a cooking fuel and recovery of nutrients from the struvite reactor reduced the carbon footprint, leading to carbon offsets of up to 2,500 kg CO<sub>2</sub> eq/year. Offsets were primarily due to avoiding methane emissions during energy recovery. Eutrophication potential decreased as resource recovery processes were integrated, primarily due to improved removal of phosphorus in effluent waters. Resource recovery efforts led to equivalent uniform annual benefits of $825 to $1,056/year, which could provide a helpful revenue source for lower-income farmers. This research can provide clarity on how small-scale farmers in marginalized settings can utilize resource recovery technologies to better manage animal manure, while improving economic and environmental sustainability outcomes.</p>","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"38 5","pages":"310-319"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/a3/ees.2020.0262.PMC8165466.pdf","citationCount":"12","resultStr":"{\"title\":\"Improving Life Cycle Economic and Environmental Sustainability of Animal Manure Management in Marginalized Farming Communities Through Resource Recovery.\",\"authors\":\"Kevin D Orner, Pablo K Cornejo, Daniel Rojas Camacho, Marisol Alvarez, Fabricio Camacho-Céspedes\",\"doi\":\"10.1089/ees.2020.0262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A growing world population with increasing levels of food consumption will lead to more dairy and swine production and increasing amount of manure that requires treatment. Discharge of excessive nutrients and carbon in untreated animal manure can lead to greenhouse gas emissions and eutrophication concerns, and treatment efforts can be expensive for small scale farmers in marginalized communities. The overall goal of this study was to determine the environmental and economic sustainability of four animal manure management scenarios in Costa Rica: (1) no treatment, (2) biodigesters, (3) biodigesters and struvite precipitation, and (4) biodigesters, struvite precipitation, and lagoons. Life cycle assessment was used to assess the carbon footprint and eutrophication potential, whereas life cycle cost analysis was used to evaluate the equivalent uniform annual worth over the construction and operation and maintenance life stages. Recovery of biogas as a cooking fuel and recovery of nutrients from the struvite reactor reduced the carbon footprint, leading to carbon offsets of up to 2,500 kg CO<sub>2</sub> eq/year. Offsets were primarily due to avoiding methane emissions during energy recovery. Eutrophication potential decreased as resource recovery processes were integrated, primarily due to improved removal of phosphorus in effluent waters. Resource recovery efforts led to equivalent uniform annual benefits of $825 to $1,056/year, which could provide a helpful revenue source for lower-income farmers. This research can provide clarity on how small-scale farmers in marginalized settings can utilize resource recovery technologies to better manage animal manure, while improving economic and environmental sustainability outcomes.</p>\",\"PeriodicalId\":11777,\"journal\":{\"name\":\"Environmental Engineering Science\",\"volume\":\"38 5\",\"pages\":\"310-319\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/a3/ees.2020.0262.PMC8165466.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Engineering Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1089/ees.2020.0262\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1089/ees.2020.0262","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Improving Life Cycle Economic and Environmental Sustainability of Animal Manure Management in Marginalized Farming Communities Through Resource Recovery.
A growing world population with increasing levels of food consumption will lead to more dairy and swine production and increasing amount of manure that requires treatment. Discharge of excessive nutrients and carbon in untreated animal manure can lead to greenhouse gas emissions and eutrophication concerns, and treatment efforts can be expensive for small scale farmers in marginalized communities. The overall goal of this study was to determine the environmental and economic sustainability of four animal manure management scenarios in Costa Rica: (1) no treatment, (2) biodigesters, (3) biodigesters and struvite precipitation, and (4) biodigesters, struvite precipitation, and lagoons. Life cycle assessment was used to assess the carbon footprint and eutrophication potential, whereas life cycle cost analysis was used to evaluate the equivalent uniform annual worth over the construction and operation and maintenance life stages. Recovery of biogas as a cooking fuel and recovery of nutrients from the struvite reactor reduced the carbon footprint, leading to carbon offsets of up to 2,500 kg CO2 eq/year. Offsets were primarily due to avoiding methane emissions during energy recovery. Eutrophication potential decreased as resource recovery processes were integrated, primarily due to improved removal of phosphorus in effluent waters. Resource recovery efforts led to equivalent uniform annual benefits of $825 to $1,056/year, which could provide a helpful revenue source for lower-income farmers. This research can provide clarity on how small-scale farmers in marginalized settings can utilize resource recovery technologies to better manage animal manure, while improving economic and environmental sustainability outcomes.
期刊介绍:
Environmental Engineering Science explores innovative solutions to problems in air, water, and land contamination and waste disposal, with coverage of climate change, environmental risk assessment and management, green technologies, sustainability, and environmental policy. Published monthly online, the Journal features applications of environmental engineering and scientific discoveries, policy issues, environmental economics, and sustainable development.