碱化对金属有机骨架MIL-100(Fe)对挥发性有机化合物(voc)吸附剂的影响

Xinyu Xie, Joy Thomas, Chang-Tang Chang, Hong Tao
{"title":"碱化对金属有机骨架MIL-100(Fe)对挥发性有机化合物(voc)吸附剂的影响","authors":"Xinyu Xie,&nbsp;Joy Thomas,&nbsp;Chang-Tang Chang,&nbsp;Hong Tao","doi":"10.1166/jnn.2021.19474","DOIUrl":null,"url":null,"abstract":"<p><p>Substantial attempts have been undertaken for the improvement of the air quality over decades; and Volatile Organic Compounds (VOCs) from the chemical and textile industries are truly listed as severe issue to be controlled. To come up with modus operandi for this issue, a novel composite of metal organic frameworks (MOFs) MIL-100(Fe) with salient tuned features of natrite was designed by a green and facile method. Mineralized composite MOFs exhibited enhanced crystallinity than pure MIL-100(Fe) as well showcased a higher surface area of 1300 m² g<sup>-1</sup>. Through dynamic acetone pressure swing adsorption setup, MIL-0.05Na (MIL-100(Fe) synthesized with 0.05 mM Na₂CO₃ solution) revealed an enhanced acetone adsorption of 210 mg g <sup>1</sup> at room temperature. Gas phase adsorption isotherms confirmed the mono layer adsorption behavior. The kinetics models evaluated that the external mass transfer was the rate limiting step for surface adsorption. The thermodynamic study manifested that the adsorption reaction was spontaneous and exothermic. The proposed mechanism of adsorption was the act of physisorption which enriched the adsorbents reusability. This research work provides a futuristic vista to design mineralized Fe-MOFs composites for an energy saving adsorbents for VOCs removal.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5510-5521"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Alkalinization Over Metal Organic Frameworks MIL-100(Fe) for Enhanced Volatile Organic Compounds (VOCs) Adsorbents.\",\"authors\":\"Xinyu Xie,&nbsp;Joy Thomas,&nbsp;Chang-Tang Chang,&nbsp;Hong Tao\",\"doi\":\"10.1166/jnn.2021.19474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Substantial attempts have been undertaken for the improvement of the air quality over decades; and Volatile Organic Compounds (VOCs) from the chemical and textile industries are truly listed as severe issue to be controlled. To come up with modus operandi for this issue, a novel composite of metal organic frameworks (MOFs) MIL-100(Fe) with salient tuned features of natrite was designed by a green and facile method. Mineralized composite MOFs exhibited enhanced crystallinity than pure MIL-100(Fe) as well showcased a higher surface area of 1300 m² g<sup>-1</sup>. Through dynamic acetone pressure swing adsorption setup, MIL-0.05Na (MIL-100(Fe) synthesized with 0.05 mM Na₂CO₃ solution) revealed an enhanced acetone adsorption of 210 mg g <sup>1</sup> at room temperature. Gas phase adsorption isotherms confirmed the mono layer adsorption behavior. The kinetics models evaluated that the external mass transfer was the rate limiting step for surface adsorption. The thermodynamic study manifested that the adsorption reaction was spontaneous and exothermic. The proposed mechanism of adsorption was the act of physisorption which enriched the adsorbents reusability. This research work provides a futuristic vista to design mineralized Fe-MOFs composites for an energy saving adsorbents for VOCs removal.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 11\",\"pages\":\"5510-5521\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

过去数十年来,政府致力改善空气质素;化学和纺织工业挥发性有机化合物(VOCs)真正被列为严重的控制问题。为了解决这一问题,采用绿色简便的方法设计了一种具有亚硝石显著调谐特性的新型金属有机骨架(mfs) MIL-100(Fe)。矿化复合mof的结晶度比纯MIL-100(Fe)高,比表面积达到1300 m²g-1。通过动态丙酮变压吸附装置,MIL-0.05Na (0.05 mM Na₂CO₃溶液合成的MIL-100(Fe))在室温下对丙酮的吸附量提高了210 mg g 1。气相吸附等温线证实了单层吸附行为。动力学模型评价外传质是表面吸附的限速步骤。热力学研究表明,吸附反应是自发的、放热的。提出吸附机理为物理吸附,提高了吸附剂的可重复利用性。本研究为矿化Fe-MOFs复合材料的节能吸附VOCs的设计提供了未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Alkalinization Over Metal Organic Frameworks MIL-100(Fe) for Enhanced Volatile Organic Compounds (VOCs) Adsorbents.

Substantial attempts have been undertaken for the improvement of the air quality over decades; and Volatile Organic Compounds (VOCs) from the chemical and textile industries are truly listed as severe issue to be controlled. To come up with modus operandi for this issue, a novel composite of metal organic frameworks (MOFs) MIL-100(Fe) with salient tuned features of natrite was designed by a green and facile method. Mineralized composite MOFs exhibited enhanced crystallinity than pure MIL-100(Fe) as well showcased a higher surface area of 1300 m² g-1. Through dynamic acetone pressure swing adsorption setup, MIL-0.05Na (MIL-100(Fe) synthesized with 0.05 mM Na₂CO₃ solution) revealed an enhanced acetone adsorption of 210 mg g 1 at room temperature. Gas phase adsorption isotherms confirmed the mono layer adsorption behavior. The kinetics models evaluated that the external mass transfer was the rate limiting step for surface adsorption. The thermodynamic study manifested that the adsorption reaction was spontaneous and exothermic. The proposed mechanism of adsorption was the act of physisorption which enriched the adsorbents reusability. This research work provides a futuristic vista to design mineralized Fe-MOFs composites for an energy saving adsorbents for VOCs removal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
期刊最新文献
Efficacy and Safety of Guihuang Formula in Treating Type III Prostatitis Patients with Dampness-Heat and Blood Stasis Syndrome: A Randomized Controlled Trial. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting. Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1