用电子健康记录数据进行生存分析:慢性肾脏疾病的实验。

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2014-10-01 Epub Date: 2014-08-19 DOI:10.1002/sam.11236
Yolanda Hagar, David Albers, Rimma Pivovarov, Herbert Chase, Vanja Dukic, Noémie Elhadad
{"title":"用电子健康记录数据进行生存分析:慢性肾脏疾病的实验。","authors":"Yolanda Hagar, David Albers, Rimma Pivovarov, Herbert Chase, Vanja Dukic, Noémie Elhadad","doi":"10.1002/sam.11236","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a detailed survival analysis for chronic kidney disease (CKD). The analysis is based on the EHR data comprising almost two decades of clinical observations collected at New York-Presbyterian, a large hospital in New York City with one of the oldest electronic health records in the United States. Our survival analysis approach centers around Bayesian multiresolution hazard modeling, with an objective to capture the changing hazard of CKD over time, adjusted for patient clinical covariates and kidney-related laboratory tests. Special attention is paid to statistical issues common to all EHR data, such as cohort definition, missing data and censoring, variable selection, and potential for joint survival and longitudinal modeling, all of which are discussed alone and within the EHR CKD context.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"7 5","pages":"385-403"},"PeriodicalIF":2.1000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112603/pdf/nihms-1697574.pdf","citationCount":"0","resultStr":"{\"title\":\"Survival Analysis with Electronic Health Record Data: Experiments with Chronic Kidney Disease.\",\"authors\":\"Yolanda Hagar, David Albers, Rimma Pivovarov, Herbert Chase, Vanja Dukic, Noémie Elhadad\",\"doi\":\"10.1002/sam.11236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a detailed survival analysis for chronic kidney disease (CKD). The analysis is based on the EHR data comprising almost two decades of clinical observations collected at New York-Presbyterian, a large hospital in New York City with one of the oldest electronic health records in the United States. Our survival analysis approach centers around Bayesian multiresolution hazard modeling, with an objective to capture the changing hazard of CKD over time, adjusted for patient clinical covariates and kidney-related laboratory tests. Special attention is paid to statistical issues common to all EHR data, such as cohort definition, missing data and censoring, variable selection, and potential for joint survival and longitudinal modeling, all of which are discussed alone and within the EHR CKD context.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"7 5\",\"pages\":\"385-403\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112603/pdf/nihms-1697574.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11236\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11236","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了慢性肾脏疾病(CKD)的详细生存分析。该分析基于电子病历数据,这些数据包括纽约长老会医院近20年的临床观察,纽约长老会医院是纽约市一家拥有美国最古老电子健康记录之一的大型医院。我们的生存分析方法以贝叶斯多分辨率风险模型为中心,目的是捕捉CKD随时间变化的风险,并根据患者临床协变量和肾脏相关实验室检查进行调整。特别关注所有电子病历数据中常见的统计问题,如队列定义、缺失数据和审查、变量选择、联合生存和纵向建模的可能性,所有这些都在电子病历CKD背景下单独讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survival Analysis with Electronic Health Record Data: Experiments with Chronic Kidney Disease.

This paper presents a detailed survival analysis for chronic kidney disease (CKD). The analysis is based on the EHR data comprising almost two decades of clinical observations collected at New York-Presbyterian, a large hospital in New York City with one of the oldest electronic health records in the United States. Our survival analysis approach centers around Bayesian multiresolution hazard modeling, with an objective to capture the changing hazard of CKD over time, adjusted for patient clinical covariates and kidney-related laboratory tests. Special attention is paid to statistical issues common to all EHR data, such as cohort definition, missing data and censoring, variable selection, and potential for joint survival and longitudinal modeling, all of which are discussed alone and within the EHR CKD context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1