评价Rasch模型的纵向锚定方法。

Journal of applied measurement Pub Date : 2020-01-01
Tara L Valladares, Karen M Schmidt
{"title":"评价Rasch模型的纵向锚定方法。","authors":"Tara L Valladares,&nbsp;Karen M Schmidt","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Because modern, simultaneously estimated longitudinal Rasch models are unable to handle many timepoints, new methods of producing person and item estimates and evaluating test function are necessary. Longitudinal anchoring, in which a common scale of item parameters is used to estimate trait levels over multiple occasions, is a potential solution. With proper anchoring procedures, person and item estimates can be obtained without limiting the number of timepoints that can be analyzed. A simulation study examining the performance of six longitudinal anchoring methods (Floated, Racked, Time One, Mean, Random, and Stacked) was conducted. The Mean and the Stacked anchoring methods best recovered the population change over time, person and item estimates, and model fit. The Racked method could not produce reliable change estimates and should be avoided. Longitudinal anchoring is an easily implemented solution when analyzing large longitudinal datasets and shows promise as a low-computation method of producing latent trait estimates.</p>","PeriodicalId":73608,"journal":{"name":"Journal of applied measurement","volume":"21 3","pages":"294-312"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Longitudinal Anchoring Methods for Rasch Models.\",\"authors\":\"Tara L Valladares,&nbsp;Karen M Schmidt\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because modern, simultaneously estimated longitudinal Rasch models are unable to handle many timepoints, new methods of producing person and item estimates and evaluating test function are necessary. Longitudinal anchoring, in which a common scale of item parameters is used to estimate trait levels over multiple occasions, is a potential solution. With proper anchoring procedures, person and item estimates can be obtained without limiting the number of timepoints that can be analyzed. A simulation study examining the performance of six longitudinal anchoring methods (Floated, Racked, Time One, Mean, Random, and Stacked) was conducted. The Mean and the Stacked anchoring methods best recovered the population change over time, person and item estimates, and model fit. The Racked method could not produce reliable change estimates and should be avoided. Longitudinal anchoring is an easily implemented solution when analyzing large longitudinal datasets and shows promise as a low-computation method of producing latent trait estimates.</p>\",\"PeriodicalId\":73608,\"journal\":{\"name\":\"Journal of applied measurement\",\"volume\":\"21 3\",\"pages\":\"294-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于现代的同时估计的纵向拉希模型无法处理多个时间点,因此需要新的方法来产生人和项目估计和评估测试函数。纵向锚定是一种潜在的解决方案,其中使用一个共同的项目参数量表来估计多个场合的特质水平。通过适当的锚定程序,可以在不限制可以分析的时间点数量的情况下获得人员和项目的估计。对六种纵向锚固方法(浮动锚固、累加锚固、一次锚固、平均锚固、随机锚固和堆叠锚固)的性能进行了仿真研究。均值和堆叠锚定方法最好地恢复了人口随时间的变化,人和项目的估计,以及模型拟合。rack方法不能产生可靠的变更估计,应该避免使用。在分析大型纵向数据集时,纵向锚定是一种易于实现的解决方案,并且有望作为一种低计算量的产生潜在性状估计的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Longitudinal Anchoring Methods for Rasch Models.

Because modern, simultaneously estimated longitudinal Rasch models are unable to handle many timepoints, new methods of producing person and item estimates and evaluating test function are necessary. Longitudinal anchoring, in which a common scale of item parameters is used to estimate trait levels over multiple occasions, is a potential solution. With proper anchoring procedures, person and item estimates can be obtained without limiting the number of timepoints that can be analyzed. A simulation study examining the performance of six longitudinal anchoring methods (Floated, Racked, Time One, Mean, Random, and Stacked) was conducted. The Mean and the Stacked anchoring methods best recovered the population change over time, person and item estimates, and model fit. The Racked method could not produce reliable change estimates and should be avoided. Longitudinal anchoring is an easily implemented solution when analyzing large longitudinal datasets and shows promise as a low-computation method of producing latent trait estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validation of Egalitarian Education Questionnaire using Rasch Measurement Model. Bootstrap Estimate of Bias for Intraclass Correlation. Rasch's Logistic Model Applied to Growth. Psychometric Properties of the General Movement Optimality Score using Rasch Measurement. Rasch Analysis of the Burn-Specific Pain Anxiety Scale: Evidence for the Abbreviated Version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1