OFD1在选择性自噬中的作用。

IF 2.6 Q3 ONCOLOGY Molecular and Cellular Oncology Pub Date : 2021-03-31 eCollection Date: 2021-01-01 DOI:10.1080/23723556.2021.1903291
Brunella Franco, Manuela Morleo
{"title":"OFD1在选择性自噬中的作用。","authors":"Brunella Franco,&nbsp;Manuela Morleo","doi":"10.1080/23723556.2021.1903291","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a cellular self-degradative pathway. Our study unveiled a novel mechanism mediated by OFD1, the protein mutated in Oral-Facial-Digital type I syndrome, based on selective degradation of autophagic proteins, which enables cells to calibrate their self-degradation. We demonstrated that unrestrained autophagy contributes to renal cysts observed in <i>Ofd1</i> mutants.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"8 3","pages":"1903291"},"PeriodicalIF":2.6000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23723556.2021.1903291","citationCount":"4","resultStr":"{\"title\":\"The role of OFD1 in selective autophagy.\",\"authors\":\"Brunella Franco,&nbsp;Manuela Morleo\",\"doi\":\"10.1080/23723556.2021.1903291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy is a cellular self-degradative pathway. Our study unveiled a novel mechanism mediated by OFD1, the protein mutated in Oral-Facial-Digital type I syndrome, based on selective degradation of autophagic proteins, which enables cells to calibrate their self-degradation. We demonstrated that unrestrained autophagy contributes to renal cysts observed in <i>Ofd1</i> mutants.</p>\",\"PeriodicalId\":37292,\"journal\":{\"name\":\"Molecular and Cellular Oncology\",\"volume\":\"8 3\",\"pages\":\"1903291\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23723556.2021.1903291\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23723556.2021.1903291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2021.1903291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

自噬是细胞的一种自降解途径。我们的研究揭示了一种由OFD1介导的新机制,OFD1是口腔-面部-数字I型综合征中突变的蛋白质,它基于自噬蛋白的选择性降解,使细胞能够校准其自我降解。我们证明了在Ofd1突变体中观察到的不受约束的自噬有助于肾囊肿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of OFD1 in selective autophagy.

Autophagy is a cellular self-degradative pathway. Our study unveiled a novel mechanism mediated by OFD1, the protein mutated in Oral-Facial-Digital type I syndrome, based on selective degradation of autophagic proteins, which enables cells to calibrate their self-degradation. We demonstrated that unrestrained autophagy contributes to renal cysts observed in Ofd1 mutants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Oncology
Molecular and Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
3.20
自引率
0.00%
发文量
18
期刊介绍: For a long time, solid neoplasms have been viewed as relatively homogeneous entities composed for the most part of malignant cells. It is now clear that tumors are highly heterogeneous structures that evolve in the context of intimate interactions between cancer cells and endothelial, stromal as well as immune cells. During the past few years, experimental and clinical oncologists have witnessed several conceptual transitions of this type. Molecular and Cellular Oncology (MCO) emerges within this conceptual framework as a high-profile forum for the publication of fundamental, translational and clinical research on cancer. The scope of MCO is broad. Submissions dealing with all aspects of oncogenesis, tumor progression and response to therapy will be welcome, irrespective of whether they focus on solid or hematological neoplasms. MCO has gathered leading scientists with expertise in multiple areas of cancer research and other fields of investigation to constitute a large, interdisciplinary, Editorial Board that will ensure the quality of articles accepted for publication. MCO will publish Original Research Articles, Brief Reports, Reviews, Short Reviews, Commentaries, Author Views (auto-commentaries) and Meeting Reports dealing with all aspects of cancer research.
期刊最新文献
METTL14-mediated m6A modification upregulates HOXB13 expression to activate NF-κB and exacerbate cervical cancer progression. An antibody-drug conjugate for endometrioid carcinoma based on the expression of cell adhesion molecule 1. The SIRT7-nucleolus connection in cancer: ARF enters the fray. Amino acid deprivation in cancer cells with compensatory autophagy induction increases sensitivity to autophagy inhibitors. Selection forces underlying aneuploidy patterns in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1