减少用于研究的电子健康记录数据错误的跨学科方法。

Neelkamal Soares, Sorabh Singhal, Casey Kloosterman, Teresa Bailey
{"title":"减少用于研究的电子健康记录数据错误的跨学科方法。","authors":"Neelkamal Soares, Sorabh Singhal, Casey Kloosterman, Teresa Bailey","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Erroneous electronic health record (EHR) data capture is a barrier to preserving data integrity. We assessed the impact of an interdisciplinary process in minimizing EHR data loss from prescription orders. We implemented a three-step approach to reduce data loss due to missing medication doses: Step 1-A data analyst updated the request code to optimize data capture; Step 2-A pharmacist and physician identified variations in EHR prescription workflows; and Step 3-The clinician team determined daily doses for patients with multiple prescriptions in the same encounter. The initial report contained 1421 prescriptions, with 377 (26.5 percent) missing dosages. Missing dosages reduced to 361 (26.3 percent) prescriptions following Step 1, and twenty-three (1.7 percent) records after Step 2. After Step 3, 1210 prescriptions remained, including 16 (1.3 percent) prescriptions missing doses. Prescription data is susceptible to missing values due to multiple data capture workflows. Our approach minimized data loss, improving its validity in retrospective research.</p>","PeriodicalId":40052,"journal":{"name":"Perspectives in health information management / AHIMA, American Health Information Management Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120677/pdf/phim0018-0001f.pdf","citationCount":"0","resultStr":"{\"title\":\"An Interdisciplinary Approach to Reducing Errors in Extracted Electronic Health Record Data for Research.\",\"authors\":\"Neelkamal Soares, Sorabh Singhal, Casey Kloosterman, Teresa Bailey\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Erroneous electronic health record (EHR) data capture is a barrier to preserving data integrity. We assessed the impact of an interdisciplinary process in minimizing EHR data loss from prescription orders. We implemented a three-step approach to reduce data loss due to missing medication doses: Step 1-A data analyst updated the request code to optimize data capture; Step 2-A pharmacist and physician identified variations in EHR prescription workflows; and Step 3-The clinician team determined daily doses for patients with multiple prescriptions in the same encounter. The initial report contained 1421 prescriptions, with 377 (26.5 percent) missing dosages. Missing dosages reduced to 361 (26.3 percent) prescriptions following Step 1, and twenty-three (1.7 percent) records after Step 2. After Step 3, 1210 prescriptions remained, including 16 (1.3 percent) prescriptions missing doses. Prescription data is susceptible to missing values due to multiple data capture workflows. Our approach minimized data loss, improving its validity in retrospective research.</p>\",\"PeriodicalId\":40052,\"journal\":{\"name\":\"Perspectives in health information management / AHIMA, American Health Information Management Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120677/pdf/phim0018-0001f.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives in health information management / AHIMA, American Health Information Management Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in health information management / AHIMA, American Health Information Management Association","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

错误的电子健康记录(EHR)数据采集是维护数据完整性的一个障碍。我们评估了跨学科流程对尽量减少处方单造成的电子病历数据丢失的影响。我们采用了一种三步法来减少因药物剂量缺失而造成的数据丢失:第 1 步:数据分析师更新请求代码以优化数据采集;第 2 步:药剂师和医生确定电子病历处方工作流程中的变化;第 3 步:临床医生团队确定同一病例中有多个处方的患者的每日剂量。初始报告包含 1421 份处方,其中 377 份(26.5%)缺少剂量。步骤 1 后,缺失剂量的处方减少到 361 份(26.3%),步骤 2 后,缺失剂量的记录减少到 23 份(1.7%)。步骤 3 后,仍有 1210 张处方,其中包括 16 张(1.3%)缺失剂量的处方。由于多重数据采集工作流程,处方数据很容易出现缺失值。我们的方法最大限度地减少了数据丢失,提高了回顾性研究的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Interdisciplinary Approach to Reducing Errors in Extracted Electronic Health Record Data for Research.

Erroneous electronic health record (EHR) data capture is a barrier to preserving data integrity. We assessed the impact of an interdisciplinary process in minimizing EHR data loss from prescription orders. We implemented a three-step approach to reduce data loss due to missing medication doses: Step 1-A data analyst updated the request code to optimize data capture; Step 2-A pharmacist and physician identified variations in EHR prescription workflows; and Step 3-The clinician team determined daily doses for patients with multiple prescriptions in the same encounter. The initial report contained 1421 prescriptions, with 377 (26.5 percent) missing dosages. Missing dosages reduced to 361 (26.3 percent) prescriptions following Step 1, and twenty-three (1.7 percent) records after Step 2. After Step 3, 1210 prescriptions remained, including 16 (1.3 percent) prescriptions missing doses. Prescription data is susceptible to missing values due to multiple data capture workflows. Our approach minimized data loss, improving its validity in retrospective research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊介绍: Perspectives in Health Information Management is a scholarly, peer-reviewed research journal whose mission is to advance health information management practice and to encourage interdisciplinary collaboration between HIM professionals and others in disciplines supporting the advancement of the management of health information. The primary focus is to promote the linkage of practice, education, and research and to provide contributions to the understanding or improvement of health information management processes and outcomes.
期刊最新文献
The Role of Clinical Decision Support Systems in Preventing Stroke in Primary Care: A Systematic Review. Best Practices for the Design of COVID-19 Dashboards. Medical Scribes: Symptom or Cause of Impeded Evolution of a Transformative Artificial Intelligence in the Electronic Health Record? Risk of Duplicate ICD Codes for Orthopedic and Injury Related Research. Quality Assessment of the Road Traffic Health and Safety Apps with a Focus on the Five Rights of Information Management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1