Wei Zhao, Xuehan Jiang, Ke Wang, Xingzhi Sun, Gang Hu, Guotong Xie
{"title":"构建基于指南的用药推荐决策树。","authors":"Wei Zhao, Xuehan Jiang, Ke Wang, Xingzhi Sun, Gang Hu, Guotong Xie","doi":"10.3233/SHTI200015","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical decision support system (CDSS) plays an essential role nowadays and CDSS for treatment provides clinicians with the clinical evidence of candidate prescriptions to assist them in making patient-specific decisions. Therefore, it is essential to find a partition of patients such that patients with similar clinical conditions are grouped together and the preferred prescriptions for different groups are diverged. A comprehensive clinical guideline often provides information of patient partition. However, for most diseases, the guideline is not so detailed that only limited circumstances are covered. This makes it challenging to group patients properly. Here we proposed an approach that combines clinical guidelines with medical data to construct a nested decision tree for patient partitioning and treatment recommendation. Compared with pure data-driven decision tree, the recommendations generated by our model have better guideline adherence and interpretability. The approach was successfully applied in a real-world case study of patients with hyperthyroidism.</p>","PeriodicalId":39242,"journal":{"name":"Studies in Health Technology and Informatics","volume":" ","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Guideline-Based Decision Tree for Medication Recommendation.\",\"authors\":\"Wei Zhao, Xuehan Jiang, Ke Wang, Xingzhi Sun, Gang Hu, Guotong Xie\",\"doi\":\"10.3233/SHTI200015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical decision support system (CDSS) plays an essential role nowadays and CDSS for treatment provides clinicians with the clinical evidence of candidate prescriptions to assist them in making patient-specific decisions. Therefore, it is essential to find a partition of patients such that patients with similar clinical conditions are grouped together and the preferred prescriptions for different groups are diverged. A comprehensive clinical guideline often provides information of patient partition. However, for most diseases, the guideline is not so detailed that only limited circumstances are covered. This makes it challenging to group patients properly. Here we proposed an approach that combines clinical guidelines with medical data to construct a nested decision tree for patient partitioning and treatment recommendation. Compared with pure data-driven decision tree, the recommendations generated by our model have better guideline adherence and interpretability. The approach was successfully applied in a real-world case study of patients with hyperthyroidism.</p>\",\"PeriodicalId\":39242,\"journal\":{\"name\":\"Studies in Health Technology and Informatics\",\"volume\":\" \",\"pages\":\"13-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Health Technology and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI200015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Health Technology and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI200015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
Construction of Guideline-Based Decision Tree for Medication Recommendation.
Clinical decision support system (CDSS) plays an essential role nowadays and CDSS for treatment provides clinicians with the clinical evidence of candidate prescriptions to assist them in making patient-specific decisions. Therefore, it is essential to find a partition of patients such that patients with similar clinical conditions are grouped together and the preferred prescriptions for different groups are diverged. A comprehensive clinical guideline often provides information of patient partition. However, for most diseases, the guideline is not so detailed that only limited circumstances are covered. This makes it challenging to group patients properly. Here we proposed an approach that combines clinical guidelines with medical data to construct a nested decision tree for patient partitioning and treatment recommendation. Compared with pure data-driven decision tree, the recommendations generated by our model have better guideline adherence and interpretability. The approach was successfully applied in a real-world case study of patients with hyperthyroidism.
期刊介绍:
This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media.