{"title":"通过限制负像素来减少金属伪影。","authors":"Gengsheng L Zeng, Megan Zeng","doi":"10.1186/s42492-021-00083-z","DOIUrl":null,"url":null,"abstract":"<p><p>When the object contains metals, its x-ray computed tomography (CT) images are normally affected by streaking artifacts. These artifacts are mainly caused by the x-ray beam hardening effects, which deviate the measurements from their true values. One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values. Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image. We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result. This paper proposes an iterative algorithm to optimize this objective function, and the unknowns are the metal affected projections. Once the metal affected projections are estimated, the filtered backprojection algorithm is used to reconstruct the final image. This paper applies the proposed algorithm to some airport bag CT scans. The bags all contain unknown metallic objects. The metal artifacts are effectively reduced by the proposed algorithm.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"4 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166984/pdf/","citationCount":"2","resultStr":"{\"title\":\"Reducing metal artifacts by restricting negative pixels.\",\"authors\":\"Gengsheng L Zeng, Megan Zeng\",\"doi\":\"10.1186/s42492-021-00083-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When the object contains metals, its x-ray computed tomography (CT) images are normally affected by streaking artifacts. These artifacts are mainly caused by the x-ray beam hardening effects, which deviate the measurements from their true values. One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values. Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image. We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result. This paper proposes an iterative algorithm to optimize this objective function, and the unknowns are the metal affected projections. Once the metal affected projections are estimated, the filtered backprojection algorithm is used to reconstruct the final image. This paper applies the proposed algorithm to some airport bag CT scans. The bags all contain unknown metallic objects. The metal artifacts are effectively reduced by the proposed algorithm.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"4 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166984/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-021-00083-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-021-00083-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Reducing metal artifacts by restricting negative pixels.
When the object contains metals, its x-ray computed tomography (CT) images are normally affected by streaking artifacts. These artifacts are mainly caused by the x-ray beam hardening effects, which deviate the measurements from their true values. One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values. Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image. We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result. This paper proposes an iterative algorithm to optimize this objective function, and the unknowns are the metal affected projections. Once the metal affected projections are estimated, the filtered backprojection algorithm is used to reconstruct the final image. This paper applies the proposed algorithm to some airport bag CT scans. The bags all contain unknown metallic objects. The metal artifacts are effectively reduced by the proposed algorithm.