{"title":"下丘脑分泌素/食欲素神经元的异质性。","authors":"Dana Sagi, Luis de Lecea, Lior Appelbaum","doi":"10.1159/000514964","DOIUrl":null,"url":null,"abstract":"<p><p>The multifunctional, hypothalamic hypocretin/orexin (HCRT)-producing neurons regulate an array of physiological and behavioral states including arousal, sleep, feeding, emotions, stress, and reward. How a presumably uniform HCRT neuron population regulates such a diverse set of functions is not clear. The role of the HCRT neuropeptides may vary depending on the timing and localization of secretion and neuronal activity. Moreover, HCRT neuropeptides may not mediate all functions ascribed to HCRT neurons. Some could be orchestrated by additional neurotransmitters and neuropeptides that are expressed in HCRT neurons. We hypothesize that HCRT neurons are segregated into genetically, anatomically and functionally distinct subpopulations. We discuss accumulating data that suggest the existence of such HCRT neuron subpopulations that may effectuate the diverse functions of these neurons in mammals and fish.</p>","PeriodicalId":35285,"journal":{"name":"Frontiers of Neurology and Neuroscience","volume":"45 ","pages":"61-74"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000514964","citationCount":"15","resultStr":"{\"title\":\"Heterogeneity of Hypocretin/Orexin Neurons.\",\"authors\":\"Dana Sagi, Luis de Lecea, Lior Appelbaum\",\"doi\":\"10.1159/000514964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multifunctional, hypothalamic hypocretin/orexin (HCRT)-producing neurons regulate an array of physiological and behavioral states including arousal, sleep, feeding, emotions, stress, and reward. How a presumably uniform HCRT neuron population regulates such a diverse set of functions is not clear. The role of the HCRT neuropeptides may vary depending on the timing and localization of secretion and neuronal activity. Moreover, HCRT neuropeptides may not mediate all functions ascribed to HCRT neurons. Some could be orchestrated by additional neurotransmitters and neuropeptides that are expressed in HCRT neurons. We hypothesize that HCRT neurons are segregated into genetically, anatomically and functionally distinct subpopulations. We discuss accumulating data that suggest the existence of such HCRT neuron subpopulations that may effectuate the diverse functions of these neurons in mammals and fish.</p>\",\"PeriodicalId\":35285,\"journal\":{\"name\":\"Frontiers of Neurology and Neuroscience\",\"volume\":\"45 \",\"pages\":\"61-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000514964\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Neurology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000514964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Neurology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000514964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
The multifunctional, hypothalamic hypocretin/orexin (HCRT)-producing neurons regulate an array of physiological and behavioral states including arousal, sleep, feeding, emotions, stress, and reward. How a presumably uniform HCRT neuron population regulates such a diverse set of functions is not clear. The role of the HCRT neuropeptides may vary depending on the timing and localization of secretion and neuronal activity. Moreover, HCRT neuropeptides may not mediate all functions ascribed to HCRT neurons. Some could be orchestrated by additional neurotransmitters and neuropeptides that are expressed in HCRT neurons. We hypothesize that HCRT neurons are segregated into genetically, anatomically and functionally distinct subpopulations. We discuss accumulating data that suggest the existence of such HCRT neuron subpopulations that may effectuate the diverse functions of these neurons in mammals and fish.
期刊介绍:
Focusing on topics in the fields of both Neurosciences and Neurology, this series provides current and unique information in basic and clinical advances on the nervous system and its disorders.