时差方案中阿尔茨海默病三重转基因小鼠(3xTg-AD) 24小时自发运动活动节律性的变化:与视网膜敏感性的相关性

Q2 Biochemistry, Genetics and Molecular Biology Journal of Circadian Rhythms Pub Date : 2021-05-27 DOI:10.5334/jcr.214
Irma Angélica González-Luna, Cinthia Juárez-Tapia, Azucena Aguilar-Vázquez, Edith Arnold, Sofia Díaz-Cintra, Manuel Miranda-Anaya, Mauricio Díaz-Muñoz
{"title":"时差方案中阿尔茨海默病三重转基因小鼠(3xTg-AD) 24小时自发运动活动节律性的变化:与视网膜敏感性的相关性","authors":"Irma Angélica González-Luna,&nbsp;Cinthia Juárez-Tapia,&nbsp;Azucena Aguilar-Vázquez,&nbsp;Edith Arnold,&nbsp;Sofia Díaz-Cintra,&nbsp;Manuel Miranda-Anaya,&nbsp;Mauricio Díaz-Muñoz","doi":"10.5334/jcr.214","DOIUrl":null,"url":null,"abstract":"<p><p>The progression of amyloid plaques and neurofibrillary tangles in different brain areas is associated with the effects of Alzheimer's disease (AD). In addition to cognitive impairment, circadian alterations in locomotor activity have also been detected, but they have not been characterized in a jet lag protocol. Therefore, the present study aimed to compare 3xTg-AD and non-transgenic mice in changes of 24 h cycles of spontaneous locomotor activity in a jet lag protocol, in an environment without a running wheel, at 3 different states of neuronal damage: early, intermediate and advanced (3, 8 and 13 months, respectively). The 3xTg-AD mice at 3 months presented differences in phase angle and acrophase, and differentially increased activity after advances more than after delays. At 13 months, a shortening of the free-running period in constant darkness was also noted. 3xTg-AD mice showed a significant increase (123%) in global activity at 8 to 13 months and in nighttime activity (153%) at 13 months. In the advance protocol (ADV), 3xTg-AD mice displayed a significant increase in global activity (171%) at 8 and 13 months. The differences in masking effect were evident at 8 months. To assess a possible retinal dysfunction that could interfere with photic entrainment as part of the neurodegenerative process, we compared electroretinogram recordings. The results showed early deterioration in the retinal response to light flashes in mesopic conditions, observed in the B-wave latency and amplitude. Thus, our study presents new behavioral and pathological characteristics of 3xTg-AD mice and reveals the usefulness of non-invasive tools in early diagnosis.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"19 ","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194968/pdf/","citationCount":"2","resultStr":"{\"title\":\"Changes in 24 h Rhythmicity of Spontaneous Locomotor Activity in the Triple Transgenic Mouse for Alzheimer's Disease (3xTg-AD) in a Jet Lag Protocol: Correlations with Retinal Sensitivity.\",\"authors\":\"Irma Angélica González-Luna,&nbsp;Cinthia Juárez-Tapia,&nbsp;Azucena Aguilar-Vázquez,&nbsp;Edith Arnold,&nbsp;Sofia Díaz-Cintra,&nbsp;Manuel Miranda-Anaya,&nbsp;Mauricio Díaz-Muñoz\",\"doi\":\"10.5334/jcr.214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The progression of amyloid plaques and neurofibrillary tangles in different brain areas is associated with the effects of Alzheimer's disease (AD). In addition to cognitive impairment, circadian alterations in locomotor activity have also been detected, but they have not been characterized in a jet lag protocol. Therefore, the present study aimed to compare 3xTg-AD and non-transgenic mice in changes of 24 h cycles of spontaneous locomotor activity in a jet lag protocol, in an environment without a running wheel, at 3 different states of neuronal damage: early, intermediate and advanced (3, 8 and 13 months, respectively). The 3xTg-AD mice at 3 months presented differences in phase angle and acrophase, and differentially increased activity after advances more than after delays. At 13 months, a shortening of the free-running period in constant darkness was also noted. 3xTg-AD mice showed a significant increase (123%) in global activity at 8 to 13 months and in nighttime activity (153%) at 13 months. In the advance protocol (ADV), 3xTg-AD mice displayed a significant increase in global activity (171%) at 8 and 13 months. The differences in masking effect were evident at 8 months. To assess a possible retinal dysfunction that could interfere with photic entrainment as part of the neurodegenerative process, we compared electroretinogram recordings. The results showed early deterioration in the retinal response to light flashes in mesopic conditions, observed in the B-wave latency and amplitude. Thus, our study presents new behavioral and pathological characteristics of 3xTg-AD mice and reveals the usefulness of non-invasive tools in early diagnosis.</p>\",\"PeriodicalId\":15461,\"journal\":{\"name\":\"Journal of Circadian Rhythms\",\"volume\":\"19 \",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194968/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jcr.214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jcr.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

摘要

不同脑区淀粉样斑块和神经原纤维缠结的进展与阿尔茨海默病(AD)的影响有关。除了认知障碍外,运动活动的昼夜节律变化也被检测到,但它们没有在时差协议中被描述。因此,本研究旨在比较3xTg-AD和非转基因小鼠在时差方案下,在没有跑步轮的环境中,在3种不同的神经元损伤状态:早期、中期和晚期(分别为3、8和13个月),24小时自发运动活动周期的变化。3xTg-AD小鼠在3个月时出现相角和顶相的差异,且提前后的活性增加差异大于延迟后。在13个月时,还注意到在持续黑暗中自由运行的时间缩短。3xTg-AD小鼠在8至13个月时的全球活动显著增加(123%),在13个月时的夜间活动显著增加(153%)。在预先方案(ADV)中,3xTg-AD小鼠在8个月和13个月时显示出全球活动显著增加(171%)。8个月时掩蔽效应差异明显。为了评估作为神经退行性过程一部分的可能干扰光夹带的视网膜功能障碍,我们比较了视网膜电图记录。结果显示,在中视条件下,视网膜对闪光的反应早期恶化,观察到b波潜伏期和振幅。因此,我们的研究揭示了3xTg-AD小鼠新的行为和病理特征,并揭示了非侵入性工具在早期诊断中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in 24 h Rhythmicity of Spontaneous Locomotor Activity in the Triple Transgenic Mouse for Alzheimer's Disease (3xTg-AD) in a Jet Lag Protocol: Correlations with Retinal Sensitivity.

The progression of amyloid plaques and neurofibrillary tangles in different brain areas is associated with the effects of Alzheimer's disease (AD). In addition to cognitive impairment, circadian alterations in locomotor activity have also been detected, but they have not been characterized in a jet lag protocol. Therefore, the present study aimed to compare 3xTg-AD and non-transgenic mice in changes of 24 h cycles of spontaneous locomotor activity in a jet lag protocol, in an environment without a running wheel, at 3 different states of neuronal damage: early, intermediate and advanced (3, 8 and 13 months, respectively). The 3xTg-AD mice at 3 months presented differences in phase angle and acrophase, and differentially increased activity after advances more than after delays. At 13 months, a shortening of the free-running period in constant darkness was also noted. 3xTg-AD mice showed a significant increase (123%) in global activity at 8 to 13 months and in nighttime activity (153%) at 13 months. In the advance protocol (ADV), 3xTg-AD mice displayed a significant increase in global activity (171%) at 8 and 13 months. The differences in masking effect were evident at 8 months. To assess a possible retinal dysfunction that could interfere with photic entrainment as part of the neurodegenerative process, we compared electroretinogram recordings. The results showed early deterioration in the retinal response to light flashes in mesopic conditions, observed in the B-wave latency and amplitude. Thus, our study presents new behavioral and pathological characteristics of 3xTg-AD mice and reveals the usefulness of non-invasive tools in early diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Circadian Rhythms
Journal of Circadian Rhythms Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊介绍: Journal of Circadian Rhythms is an Open Access, peer-reviewed online journal that publishes research articles dealing with circadian and nycthemeral (daily) rhythms in living organisms, including processes associated with photoperiodism and daily torpor. Journal of Circadian Rhythms aims to include both basic and applied research at any level of biological organization (molecular, cellular, organic, organismal, and populational). Studies of daily rhythms in environmental factors that directly affect circadian rhythms are also pertinent to the journal"s mission.
期刊最新文献
Circadian Temperature in Moderate to Severe Acute Stroke Patients. Timely Questions Emerging in Chronobiology: The Circadian Clock Keeps on Ticking Reflections on Several Landmark Advances in Circadian Biology Abnormalities of Rest-Activity and Light Exposure Rhythms Associated with Cognitive Function in Patients with Mild Cognitive Impairment (MCI). The Alarm Clock Against the Sun: Trends in Google Trends Search Activity Across the Transitions to and from Daylight Saving Time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1