农杆菌介导的油菜转化研究

Q1 Agricultural and Biological Sciences Current protocols in plant biology Pub Date : 2018-02-13 DOI:10.1002/cppb.20060
Ruth Bates, Melanie Craze, Emma J. Wallington
{"title":"农杆菌介导的油菜转化研究","authors":"Ruth Bates,&nbsp;Melanie Craze,&nbsp;Emma J. Wallington","doi":"10.1002/cppb.20060","DOIUrl":null,"url":null,"abstract":"<p>Oilseed rape (<i>Brassica napus</i>) is a commercially important member of the <i>Brassicacea</i> family. It is grown for its edible and industrial oils as well as for animal feed. Genetic transformation technology has been used to study gene function and produce oilseed rape with improved agronomic characteristics. This protocol describes a method for the <i>Agrobacterium tumefaciens</i>–mediated transformation of oilseed rape cotyledonary petioles. The method is reproducible and has been used to transform both spring and winter cultivars. Modifications have been made to the rooting stage, which have reduced the vitrification of shoots. This has not only increased the number of phenotypically normal shoots but has also resulted in an increase in transformation efficiency, concomitant with a dramatic reduction in the number of escapes regenerated. Transformation frequencies typically range from 5% to 10%, with an average of 12% using doubled haploid model varieties, but a maximum efficiency of 20% has been achieved. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20060","citationCount":"15","resultStr":"{\"title\":\"Agrobacterium-Mediated Transformation of Oilseed Rape (Brassica napus)\",\"authors\":\"Ruth Bates,&nbsp;Melanie Craze,&nbsp;Emma J. Wallington\",\"doi\":\"10.1002/cppb.20060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oilseed rape (<i>Brassica napus</i>) is a commercially important member of the <i>Brassicacea</i> family. It is grown for its edible and industrial oils as well as for animal feed. Genetic transformation technology has been used to study gene function and produce oilseed rape with improved agronomic characteristics. This protocol describes a method for the <i>Agrobacterium tumefaciens</i>–mediated transformation of oilseed rape cotyledonary petioles. The method is reproducible and has been used to transform both spring and winter cultivars. Modifications have been made to the rooting stage, which have reduced the vitrification of shoots. This has not only increased the number of phenotypically normal shoots but has also resulted in an increase in transformation efficiency, concomitant with a dramatic reduction in the number of escapes regenerated. Transformation frequencies typically range from 5% to 10%, with an average of 12% using doubled haploid model varieties, but a maximum efficiency of 20% has been achieved. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10932,\"journal\":{\"name\":\"Current protocols in plant biology\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cppb.20060\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in plant biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 15

摘要

油菜(Brassica napus)是芸苔科植物中具有重要商业价值的成员。种植它是为了食用和工业用油,以及作为动物饲料。利用遗传转化技术研究油菜基因功能,生产出具有改良农艺性状的油菜。本文描述了一种由农杆菌介导的油菜子叶叶柄转化的方法。该方法重复性好,已用于春、冬品种的转化。对生根期进行了改造,减少了枝条的玻璃化。这不仅增加了表型正常的芽的数量,而且还增加了转化效率,同时大大减少了再生的脱芽数量。转化频率通常在5%到10%之间,使用双单倍体模型品种的平均转化频率为12%,但最高效率为20%。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agrobacterium-Mediated Transformation of Oilseed Rape (Brassica napus)

Oilseed rape (Brassica napus) is a commercially important member of the Brassicacea family. It is grown for its edible and industrial oils as well as for animal feed. Genetic transformation technology has been used to study gene function and produce oilseed rape with improved agronomic characteristics. This protocol describes a method for the Agrobacterium tumefaciens–mediated transformation of oilseed rape cotyledonary petioles. The method is reproducible and has been used to transform both spring and winter cultivars. Modifications have been made to the rooting stage, which have reduced the vitrification of shoots. This has not only increased the number of phenotypically normal shoots but has also resulted in an increase in transformation efficiency, concomitant with a dramatic reduction in the number of escapes regenerated. Transformation frequencies typically range from 5% to 10%, with an average of 12% using doubled haploid model varieties, but a maximum efficiency of 20% has been achieved. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
期刊最新文献
Issue Information Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA Isolation of Plant Root Nuclei for Single Cell RNA Sequencing Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis In-Plate Quantitative Characterization of Arabidopsis thaliana Susceptibility to the Fungal Vascular Pathogen Fusarium oxysporum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1