原子描述符设计的艺术

Q1 Pharmacology, Toxicology and Pharmaceutics Drug Discovery Today: Technologies Pub Date : 2019-12-01 DOI:10.1016/j.ddtec.2020.06.004
Andreas H. Göller
{"title":"原子描述符设计的艺术","authors":"Andreas H. Göller","doi":"10.1016/j.ddtec.2020.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>This review provides an overview of descriptions of atoms applied to the understanding of phenomena like chemical reactivity and selectivity, pK<sub>a</sub> values, Site of Metabolism prediction, or hydrogen bond strengths, but also the substitution of quantum mechanical calculations by machine learning models for energies, forces or even spectrosocopic properties and finally the fast calculation of atomic charges for force field parametrization. The descriptor space ranges from derivatives of the wavefunctions or electron density via quantum mechanics derived descriptors to classical descriptions of atoms and their embedding in a molecule. The common denominator for all approaches is the thorough understanding of the physics of the chemical problem that guided the design of the atom descriptor. Quantum mechanics (QM) and machine learning (ML) finally are converging to a new discipline, namely QM/ML.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 37-43"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.06.004","citationCount":"4","resultStr":"{\"title\":\"The art of atom descriptor design\",\"authors\":\"Andreas H. Göller\",\"doi\":\"10.1016/j.ddtec.2020.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review provides an overview of descriptions of atoms applied to the understanding of phenomena like chemical reactivity and selectivity, pK<sub>a</sub> values, Site of Metabolism prediction, or hydrogen bond strengths, but also the substitution of quantum mechanical calculations by machine learning models for energies, forces or even spectrosocopic properties and finally the fast calculation of atomic charges for force field parametrization. The descriptor space ranges from derivatives of the wavefunctions or electron density via quantum mechanics derived descriptors to classical descriptions of atoms and their embedding in a molecule. The common denominator for all approaches is the thorough understanding of the physics of the chemical problem that guided the design of the atom descriptor. Quantum mechanics (QM) and machine learning (ML) finally are converging to a new discipline, namely QM/ML.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"32 \",\"pages\":\"Pages 37-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.06.004\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674920300056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 4

摘要

本文综述了原子描述在理解化学反应性和选择性、pKa值、代谢位点预测或氢键强度等现象中的应用,以及用机器学习模型代替量子力学计算的能量、力甚至光谱性质,最后是用于力场参数化的原子电荷的快速计算。描述符空间的范围从波函数或电子密度的导数通过量子力学衍生的描述符到原子及其在分子中的嵌入的经典描述。所有方法的共同点是对指导原子描述符设计的化学问题的物理学的透彻理解。量子力学(QM)和机器学习(ML)最终融合为一个新的学科,即QM/ML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The art of atom descriptor design

This review provides an overview of descriptions of atoms applied to the understanding of phenomena like chemical reactivity and selectivity, pKa values, Site of Metabolism prediction, or hydrogen bond strengths, but also the substitution of quantum mechanical calculations by machine learning models for energies, forces or even spectrosocopic properties and finally the fast calculation of atomic charges for force field parametrization. The descriptor space ranges from derivatives of the wavefunctions or electron density via quantum mechanics derived descriptors to classical descriptions of atoms and their embedding in a molecule. The common denominator for all approaches is the thorough understanding of the physics of the chemical problem that guided the design of the atom descriptor. Quantum mechanics (QM) and machine learning (ML) finally are converging to a new discipline, namely QM/ML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
期刊最新文献
Proteomics advances towards developing SARS-CoV-2 therapeutics using in silico drug repurposing approaches Application of proteomic data in the translation of in vitro observations to associated clinical outcomes Advances in sample preparation for membrane proteome quantification Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1