Xiaolin Xia, Jianxing Hu, Yanxing Wang, Liangren Zhang, Zhenming Liu
{"title":"基于图的新生药物设计生成模型","authors":"Xiaolin Xia, Jianxing Hu, Yanxing Wang, Liangren Zhang, Zhenming Liu","doi":"10.1016/j.ddtec.2020.11.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>The discovery of new chemical entities is a crucial part of drug discovery, which requires the lead compounds to have desired properties to be pharmaceutically active. </span><em>De novo</em><span> drug design aims to generate and optimize novel ligands for macromolecular targets from scratch. The development of graph-based deep generative neural networks has provided a new method. In this review, we gave a brief introduction to graph representation and graph-based generative models for </span><em>de novo</em> drug design, summarized them as four architectures, and concluded each’s characteristics. We also discussed generative models for scaffold- and fragment-based design and graph-based generative models’ future directions.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 45-53"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.11.004","citationCount":"19","resultStr":"{\"title\":\"Graph-based generative models for de Novo drug design\",\"authors\":\"Xiaolin Xia, Jianxing Hu, Yanxing Wang, Liangren Zhang, Zhenming Liu\",\"doi\":\"10.1016/j.ddtec.2020.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The discovery of new chemical entities is a crucial part of drug discovery, which requires the lead compounds to have desired properties to be pharmaceutically active. </span><em>De novo</em><span> drug design aims to generate and optimize novel ligands for macromolecular targets from scratch. The development of graph-based deep generative neural networks has provided a new method. In this review, we gave a brief introduction to graph representation and graph-based generative models for </span><em>de novo</em> drug design, summarized them as four architectures, and concluded each’s characteristics. We also discussed generative models for scaffold- and fragment-based design and graph-based generative models’ future directions.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"32 \",\"pages\":\"Pages 45-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.11.004\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674920300251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Graph-based generative models for de Novo drug design
The discovery of new chemical entities is a crucial part of drug discovery, which requires the lead compounds to have desired properties to be pharmaceutically active. De novo drug design aims to generate and optimize novel ligands for macromolecular targets from scratch. The development of graph-based deep generative neural networks has provided a new method. In this review, we gave a brief introduction to graph representation and graph-based generative models for de novo drug design, summarized them as four architectures, and concluded each’s characteristics. We also discussed generative models for scaffold- and fragment-based design and graph-based generative models’ future directions.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.