基于图的新生药物设计生成模型

Q1 Pharmacology, Toxicology and Pharmaceutics Drug Discovery Today: Technologies Pub Date : 2019-12-01 DOI:10.1016/j.ddtec.2020.11.004
Xiaolin Xia, Jianxing Hu, Yanxing Wang, Liangren Zhang, Zhenming Liu
{"title":"基于图的新生药物设计生成模型","authors":"Xiaolin Xia,&nbsp;Jianxing Hu,&nbsp;Yanxing Wang,&nbsp;Liangren Zhang,&nbsp;Zhenming Liu","doi":"10.1016/j.ddtec.2020.11.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>The discovery of new chemical entities is a crucial part of drug discovery, which requires the lead compounds to have desired properties to be pharmaceutically active. </span><em>De novo</em><span> drug design aims to generate and optimize novel ligands for macromolecular targets from scratch. The development of graph-based deep generative neural networks has provided a new method. In this review, we gave a brief introduction to graph representation and graph-based generative models for </span><em>de novo</em> drug design, summarized them as four architectures, and concluded each’s characteristics. We also discussed generative models for scaffold- and fragment-based design and graph-based generative models’ future directions.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 45-53"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.11.004","citationCount":"19","resultStr":"{\"title\":\"Graph-based generative models for de Novo drug design\",\"authors\":\"Xiaolin Xia,&nbsp;Jianxing Hu,&nbsp;Yanxing Wang,&nbsp;Liangren Zhang,&nbsp;Zhenming Liu\",\"doi\":\"10.1016/j.ddtec.2020.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The discovery of new chemical entities is a crucial part of drug discovery, which requires the lead compounds to have desired properties to be pharmaceutically active. </span><em>De novo</em><span> drug design aims to generate and optimize novel ligands for macromolecular targets from scratch. The development of graph-based deep generative neural networks has provided a new method. In this review, we gave a brief introduction to graph representation and graph-based generative models for </span><em>de novo</em> drug design, summarized them as four architectures, and concluded each’s characteristics. We also discussed generative models for scaffold- and fragment-based design and graph-based generative models’ future directions.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"32 \",\"pages\":\"Pages 45-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.11.004\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674920300251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 19

摘要

新化学实体的发现是药物发现的重要组成部分,这就要求先导化合物具有理想的药性。从头开始的药物设计旨在为大分子靶标生成和优化新的配体。基于图的深度生成神经网络的发展提供了一种新的方法。本文简要介绍了图表示和基于图的生成模型在新药物设计中的应用,将其归纳为四种架构,并总结了各自的特点。我们还讨论了基于脚手架和碎片设计的生成模型以及基于图形的生成模型的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-based generative models for de Novo drug design

The discovery of new chemical entities is a crucial part of drug discovery, which requires the lead compounds to have desired properties to be pharmaceutically active. De novo drug design aims to generate and optimize novel ligands for macromolecular targets from scratch. The development of graph-based deep generative neural networks has provided a new method. In this review, we gave a brief introduction to graph representation and graph-based generative models for de novo drug design, summarized them as four architectures, and concluded each’s characteristics. We also discussed generative models for scaffold- and fragment-based design and graph-based generative models’ future directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
期刊最新文献
Proteomics advances towards developing SARS-CoV-2 therapeutics using in silico drug repurposing approaches Application of proteomic data in the translation of in vitro observations to associated clinical outcomes Advances in sample preparation for membrane proteome quantification Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1