“细菌生存策略”文集社论。

IF 0.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Physiology Pub Date : 2021-01-01 Epub Date: 2021-07-01 DOI:10.1159/000517629
Karl Forchhammer
{"title":"“细菌生存策略”文集社论。","authors":"Karl Forchhammer","doi":"10.1159/000517629","DOIUrl":null,"url":null,"abstract":"The question of how bacteria cope with harmful conditions and which strategies they employ to maintain viability in unfavorable environments represents one of the most fundamental issues in microbiology. In an ideal environment, where substrates and nutrients are abundantly available and metabolic end-products are constantly removed, bacterial populations grow exponentially. Research in classical microbial physiology has for long focused on deciphering cellular processes during this phase of a bacterial life. However, in most natural environments, bacteria face – at least temporarily – adverse conditions, which limit their growth or where the viability of bacteria is challenged. Abiotic conditions stressing viability could be severe lack of essential nutrients, the presence of toxic compounds or unfavorable physicochemical environmental conditions. Moreover, the surrounding organisms challenge bacterial survival as predators or competitors for resources and niche occupation. Bacteria have been subjected to these selective pressures during their entire evolution. As a result, they acquired elaborate strategies that allow them to cope with such challenges. Thus, bacterial survival strategies are fundamental to understand key aspects of bacterial behavior, from the long-term survival of nutrient-starved cyanobacteria and their stunning recovery capabilities to the strategies of pathogenic bacteria to survive and resist host defense or to withstand competing microorganisms. We can assume that the survival strategies of bacteria are based on fundamental principles acquired early in evolution and therefore common in most bacteria, as well as on lifestyle specific and highly adapted programs, acquired during niche evolution of the various bacterial genera. These manifold survival strategies are essential to successfully compete in the various ecological niches and to colonize new habitats and hosts. Therefore, this topic is of greatest relevance for bacterial ecology and physiology, for the spread of bacterial pathogens, and for the development of antibacterial compounds and, hence, it is a central area of microbiological research. Nine years ago, the DFG-funded research training group “Molecular Principles of Bacterial Survival Strategies” (RTG1708) was initiated at the University of Tübingen with the aim to elucidate fundamental and niche specific principles of bacterial survival strategies in an interdisciplinary research group, by combining the expertise of research teams with a strong background in molecular physiology, genetics, chemical analytics, environmental microbiology or medical microbiology. On the occasion of the end of the RTG1708 program, a final symposium on “bacterial survival strategies” was organized from October 7 to 9, 2020, together with invited international guests included via remote video access. The present article collection on bacterial survival strategies includes both primary research papers as well as review articles from contributors of this symposium. The papers in this article collection reflect the breadth of the research spectrum. A fundamental challenge to","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000517629","citationCount":"0","resultStr":"{\"title\":\"Editorial for Article Collection on \\\"Bacterial Survival Strategies\\\".\",\"authors\":\"Karl Forchhammer\",\"doi\":\"10.1159/000517629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question of how bacteria cope with harmful conditions and which strategies they employ to maintain viability in unfavorable environments represents one of the most fundamental issues in microbiology. In an ideal environment, where substrates and nutrients are abundantly available and metabolic end-products are constantly removed, bacterial populations grow exponentially. Research in classical microbial physiology has for long focused on deciphering cellular processes during this phase of a bacterial life. However, in most natural environments, bacteria face – at least temporarily – adverse conditions, which limit their growth or where the viability of bacteria is challenged. Abiotic conditions stressing viability could be severe lack of essential nutrients, the presence of toxic compounds or unfavorable physicochemical environmental conditions. Moreover, the surrounding organisms challenge bacterial survival as predators or competitors for resources and niche occupation. Bacteria have been subjected to these selective pressures during their entire evolution. As a result, they acquired elaborate strategies that allow them to cope with such challenges. Thus, bacterial survival strategies are fundamental to understand key aspects of bacterial behavior, from the long-term survival of nutrient-starved cyanobacteria and their stunning recovery capabilities to the strategies of pathogenic bacteria to survive and resist host defense or to withstand competing microorganisms. We can assume that the survival strategies of bacteria are based on fundamental principles acquired early in evolution and therefore common in most bacteria, as well as on lifestyle specific and highly adapted programs, acquired during niche evolution of the various bacterial genera. These manifold survival strategies are essential to successfully compete in the various ecological niches and to colonize new habitats and hosts. Therefore, this topic is of greatest relevance for bacterial ecology and physiology, for the spread of bacterial pathogens, and for the development of antibacterial compounds and, hence, it is a central area of microbiological research. Nine years ago, the DFG-funded research training group “Molecular Principles of Bacterial Survival Strategies” (RTG1708) was initiated at the University of Tübingen with the aim to elucidate fundamental and niche specific principles of bacterial survival strategies in an interdisciplinary research group, by combining the expertise of research teams with a strong background in molecular physiology, genetics, chemical analytics, environmental microbiology or medical microbiology. On the occasion of the end of the RTG1708 program, a final symposium on “bacterial survival strategies” was organized from October 7 to 9, 2020, together with invited international guests included via remote video access. The present article collection on bacterial survival strategies includes both primary research papers as well as review articles from contributors of this symposium. The papers in this article collection reflect the breadth of the research spectrum. A fundamental challenge to\",\"PeriodicalId\":18457,\"journal\":{\"name\":\"Microbial Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000517629\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000517629\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000517629","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editorial for Article Collection on "Bacterial Survival Strategies".
The question of how bacteria cope with harmful conditions and which strategies they employ to maintain viability in unfavorable environments represents one of the most fundamental issues in microbiology. In an ideal environment, where substrates and nutrients are abundantly available and metabolic end-products are constantly removed, bacterial populations grow exponentially. Research in classical microbial physiology has for long focused on deciphering cellular processes during this phase of a bacterial life. However, in most natural environments, bacteria face – at least temporarily – adverse conditions, which limit their growth or where the viability of bacteria is challenged. Abiotic conditions stressing viability could be severe lack of essential nutrients, the presence of toxic compounds or unfavorable physicochemical environmental conditions. Moreover, the surrounding organisms challenge bacterial survival as predators or competitors for resources and niche occupation. Bacteria have been subjected to these selective pressures during their entire evolution. As a result, they acquired elaborate strategies that allow them to cope with such challenges. Thus, bacterial survival strategies are fundamental to understand key aspects of bacterial behavior, from the long-term survival of nutrient-starved cyanobacteria and their stunning recovery capabilities to the strategies of pathogenic bacteria to survive and resist host defense or to withstand competing microorganisms. We can assume that the survival strategies of bacteria are based on fundamental principles acquired early in evolution and therefore common in most bacteria, as well as on lifestyle specific and highly adapted programs, acquired during niche evolution of the various bacterial genera. These manifold survival strategies are essential to successfully compete in the various ecological niches and to colonize new habitats and hosts. Therefore, this topic is of greatest relevance for bacterial ecology and physiology, for the spread of bacterial pathogens, and for the development of antibacterial compounds and, hence, it is a central area of microbiological research. Nine years ago, the DFG-funded research training group “Molecular Principles of Bacterial Survival Strategies” (RTG1708) was initiated at the University of Tübingen with the aim to elucidate fundamental and niche specific principles of bacterial survival strategies in an interdisciplinary research group, by combining the expertise of research teams with a strong background in molecular physiology, genetics, chemical analytics, environmental microbiology or medical microbiology. On the occasion of the end of the RTG1708 program, a final symposium on “bacterial survival strategies” was organized from October 7 to 9, 2020, together with invited international guests included via remote video access. The present article collection on bacterial survival strategies includes both primary research papers as well as review articles from contributors of this symposium. The papers in this article collection reflect the breadth of the research spectrum. A fundamental challenge to
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
2.60%
发文量
13
期刊最新文献
Virulence-related genes expression in planktonic mixed cultures of Candida albicans and non-albicans Candida species. Multifaceted dinoflagellates and the marine model Prorocentrum cordatum. An insider's perspective about the pathogenic relevance of gut bacterial transportomes. Pseudomonas stutzeri KC carries the pdt genes for carbon tetrachloride degradation on an integrative and conjugative element. Global growth phase response of the gut bacterium Phocaeicola vulgatus (phylum Bacteroidota).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1