{"title":"噪声诱导癫痫患者癫痫尖峰产生的静息。","authors":"Charith N Cooray, Ana Carvalho, Gerald K Cooray","doi":"10.1007/s10827-020-00772-3","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical scalp electroencephalographic recordings from patients with epilepsy are distinguished by the presence of epileptic discharges i.e. spikes or sharp waves. These often occur randomly on a background of fluctuating potentials. The spike rate varies between different brain states (sleep and awake) and patients. Epileptogenic tissue and regions near these often show increased spike rates in comparison to other cortical regions. Several studies have shown a relation between spike rate and background activity although the underlying reason for this is still poorly understood. Both these processes, spike occurrence and background activity show evidence of being at least partly stochastic processes. In this study we show that epileptic discharges seen on scalp electroencephalographic recordings and background activity are driven at least partly by a common biological noise. Furthermore, our results indicate noise induced quiescence of spike generation which, in analogy with computational models of spiking, indicate spikes to be generated by transitions between semi-stable states of the brain, similar to the generation of epileptic seizure activity. The deepened physiological understanding of spike generation in epilepsy that this study provides could be useful in the electrophysiological assessment of different therapies for epilepsy including the effect of different drugs or electrical stimulation.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 1","pages":"57-67"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-020-00772-3","citationCount":"4","resultStr":"{\"title\":\"Noise induced quiescence of epileptic spike generation in patients with epilepsy.\",\"authors\":\"Charith N Cooray, Ana Carvalho, Gerald K Cooray\",\"doi\":\"10.1007/s10827-020-00772-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical scalp electroencephalographic recordings from patients with epilepsy are distinguished by the presence of epileptic discharges i.e. spikes or sharp waves. These often occur randomly on a background of fluctuating potentials. The spike rate varies between different brain states (sleep and awake) and patients. Epileptogenic tissue and regions near these often show increased spike rates in comparison to other cortical regions. Several studies have shown a relation between spike rate and background activity although the underlying reason for this is still poorly understood. Both these processes, spike occurrence and background activity show evidence of being at least partly stochastic processes. In this study we show that epileptic discharges seen on scalp electroencephalographic recordings and background activity are driven at least partly by a common biological noise. Furthermore, our results indicate noise induced quiescence of spike generation which, in analogy with computational models of spiking, indicate spikes to be generated by transitions between semi-stable states of the brain, similar to the generation of epileptic seizure activity. The deepened physiological understanding of spike generation in epilepsy that this study provides could be useful in the electrophysiological assessment of different therapies for epilepsy including the effect of different drugs or electrical stimulation.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\"49 1\",\"pages\":\"57-67\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10827-020-00772-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-020-00772-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-020-00772-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Noise induced quiescence of epileptic spike generation in patients with epilepsy.
Clinical scalp electroencephalographic recordings from patients with epilepsy are distinguished by the presence of epileptic discharges i.e. spikes or sharp waves. These often occur randomly on a background of fluctuating potentials. The spike rate varies between different brain states (sleep and awake) and patients. Epileptogenic tissue and regions near these often show increased spike rates in comparison to other cortical regions. Several studies have shown a relation between spike rate and background activity although the underlying reason for this is still poorly understood. Both these processes, spike occurrence and background activity show evidence of being at least partly stochastic processes. In this study we show that epileptic discharges seen on scalp electroencephalographic recordings and background activity are driven at least partly by a common biological noise. Furthermore, our results indicate noise induced quiescence of spike generation which, in analogy with computational models of spiking, indicate spikes to be generated by transitions between semi-stable states of the brain, similar to the generation of epileptic seizure activity. The deepened physiological understanding of spike generation in epilepsy that this study provides could be useful in the electrophysiological assessment of different therapies for epilepsy including the effect of different drugs or electrical stimulation.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.