{"title":"修复材料上的生物膜。","authors":"Gottfried Schmalz, Fabian Cieplik","doi":"10.1159/000510191","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilm formation depends on many factors, one of them being the surface (substrate) on which the biofilm is formed, and dental restorative materials are such substrates. Biofilms play a crucial role for caries formation and inflammation of gingival, periodontal, or mucosal tissues next to restorations. Even general health problems such as systemic infections in immunocompromised patients may result from biofilms on dental materials (e.g., on dentures). Furthermore, biofilms may change material or surface properties. Biofilms on restorative materials have been investigated by several in vitro, in situ, and in vivo methods measuring a large number of different endpoints. Basically, datasets obtained from different methodological approaches are most suitable for final assessments. While surface properties like wettability or surface free energy (SFE) influence biofilm formation to a certain extent, the most relevant surface properties are material roughness followed by surface chemistry. The pellicle, which is formed rapidly on restorations after in vivo exposure, masks or levels off the influence of surface properties like wettability or SFE on biofilm formation. The prevention of biofilm formation is mainly based on general oral hygiene regimens. Furthermore, optimal polishing of restorative materials is instrumental. Several antimicrobial substances have been incorporated into restorative materials, which act by being released or as surface repellents. However, the optimal biofilm-preventive restorative material has not been found so far. New approaches in this context should aim at: (1) better understanding the role of the biofilm matrix (extracellular polymeric substance), and (2) implementing ecology-based approaches for the modification of dysbiotic disease-associated biofilms.</p>","PeriodicalId":35771,"journal":{"name":"Monographs in Oral Science","volume":"29 ","pages":"155-194"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Biofilms on Restorative Materials.\",\"authors\":\"Gottfried Schmalz, Fabian Cieplik\",\"doi\":\"10.1159/000510191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilm formation depends on many factors, one of them being the surface (substrate) on which the biofilm is formed, and dental restorative materials are such substrates. Biofilms play a crucial role for caries formation and inflammation of gingival, periodontal, or mucosal tissues next to restorations. Even general health problems such as systemic infections in immunocompromised patients may result from biofilms on dental materials (e.g., on dentures). Furthermore, biofilms may change material or surface properties. Biofilms on restorative materials have been investigated by several in vitro, in situ, and in vivo methods measuring a large number of different endpoints. Basically, datasets obtained from different methodological approaches are most suitable for final assessments. While surface properties like wettability or surface free energy (SFE) influence biofilm formation to a certain extent, the most relevant surface properties are material roughness followed by surface chemistry. The pellicle, which is formed rapidly on restorations after in vivo exposure, masks or levels off the influence of surface properties like wettability or SFE on biofilm formation. The prevention of biofilm formation is mainly based on general oral hygiene regimens. Furthermore, optimal polishing of restorative materials is instrumental. Several antimicrobial substances have been incorporated into restorative materials, which act by being released or as surface repellents. However, the optimal biofilm-preventive restorative material has not been found so far. New approaches in this context should aim at: (1) better understanding the role of the biofilm matrix (extracellular polymeric substance), and (2) implementing ecology-based approaches for the modification of dysbiotic disease-associated biofilms.</p>\",\"PeriodicalId\":35771,\"journal\":{\"name\":\"Monographs in Oral Science\",\"volume\":\"29 \",\"pages\":\"155-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monographs in Oral Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000510191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs in Oral Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000510191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
Biofilm formation depends on many factors, one of them being the surface (substrate) on which the biofilm is formed, and dental restorative materials are such substrates. Biofilms play a crucial role for caries formation and inflammation of gingival, periodontal, or mucosal tissues next to restorations. Even general health problems such as systemic infections in immunocompromised patients may result from biofilms on dental materials (e.g., on dentures). Furthermore, biofilms may change material or surface properties. Biofilms on restorative materials have been investigated by several in vitro, in situ, and in vivo methods measuring a large number of different endpoints. Basically, datasets obtained from different methodological approaches are most suitable for final assessments. While surface properties like wettability or surface free energy (SFE) influence biofilm formation to a certain extent, the most relevant surface properties are material roughness followed by surface chemistry. The pellicle, which is formed rapidly on restorations after in vivo exposure, masks or levels off the influence of surface properties like wettability or SFE on biofilm formation. The prevention of biofilm formation is mainly based on general oral hygiene regimens. Furthermore, optimal polishing of restorative materials is instrumental. Several antimicrobial substances have been incorporated into restorative materials, which act by being released or as surface repellents. However, the optimal biofilm-preventive restorative material has not been found so far. New approaches in this context should aim at: (1) better understanding the role of the biofilm matrix (extracellular polymeric substance), and (2) implementing ecology-based approaches for the modification of dysbiotic disease-associated biofilms.
期刊介绍:
For two decades, ‘Monographs in Oral Science’ has provided a source of in-depth discussion of selected topics in the sciences related to stomatology. Senior investigators are invited to present expanded contributions in their fields of special expertise. The topics chosen are those which have generated a long-standing interest, and on which new conceptual insights or innovative biotechnology are making considerable impact. Authors are selected on the basis of having made lasting contributions to their chosen field and their willingness to share their findings with others.