Hyun Jin Nam, Ji-Hun Yuk, Kyu Song, Young Sun Kim, Su-Yong Nam, Se-Hoon Park
{"title":"高性能领结天线的光子烧结印刷电极。","authors":"Hyun Jin Nam, Ji-Hun Yuk, Kyu Song, Young Sun Kim, Su-Yong Nam, Se-Hoon Park","doi":"10.1166/jnn.2021.19509","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, flexible electronic device technology has evolved beyond curved devices with the development of flexible/stretchable devices that can be crumpled or stretched. Both elasticity and durability are essential for these devices, which should have high-conductivity for antennas and repeatability for sensors. In addition, electronic-skins, which can have a direct impact on the human-body, should be harmless to the human-body and should not be deformed by contact with sweat or organic matter. In this study, PDMS substrates were used to satisfy the above conditions. PDMS is used to fabricate human-friendly, flexible/stretchable substrates, and it has excellent repeat durability characteristics. To improve the adhesion of these PDMS films and electrodes, conductive paste was produced based on PDMS resins of the same properties. In addition, two types of Ag particles were selected as conductive fillers because the electrode characteristics of the antenna application requires excellent conductivity, and conductive paste were produced using flake Ag, which could affect conductivity, and Ag nanoparticles that affect stretchability and repeatability. The paste was applied using a high-efficiency printing technique. The printed electrodes were cured in a thermal oven. For higher conductivity, photonic-sintering was carried out during post-processing. As a result, 1.1117×106 (S/m) had excellent conductivity, performed well in repeated tensile-durability experiments of 30% to 100 times, and produced a bow-tie antenna for the above electrodes. As a result of tensing up to 35% through a Network-Analyzer, there was no performance change in the resonance-frequency or return-loss values, and excellent electrodes were developed that would achieve excellent performance even if they are applied in the sub-frequency area of 5G-antennas in the future.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5881-5889"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Printed Electrode for High-Performance Bow-Tie Antenna by Photonic Sintering Process.\",\"authors\":\"Hyun Jin Nam, Ji-Hun Yuk, Kyu Song, Young Sun Kim, Su-Yong Nam, Se-Hoon Park\",\"doi\":\"10.1166/jnn.2021.19509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, flexible electronic device technology has evolved beyond curved devices with the development of flexible/stretchable devices that can be crumpled or stretched. Both elasticity and durability are essential for these devices, which should have high-conductivity for antennas and repeatability for sensors. In addition, electronic-skins, which can have a direct impact on the human-body, should be harmless to the human-body and should not be deformed by contact with sweat or organic matter. In this study, PDMS substrates were used to satisfy the above conditions. PDMS is used to fabricate human-friendly, flexible/stretchable substrates, and it has excellent repeat durability characteristics. To improve the adhesion of these PDMS films and electrodes, conductive paste was produced based on PDMS resins of the same properties. In addition, two types of Ag particles were selected as conductive fillers because the electrode characteristics of the antenna application requires excellent conductivity, and conductive paste were produced using flake Ag, which could affect conductivity, and Ag nanoparticles that affect stretchability and repeatability. The paste was applied using a high-efficiency printing technique. The printed electrodes were cured in a thermal oven. For higher conductivity, photonic-sintering was carried out during post-processing. As a result, 1.1117×106 (S/m) had excellent conductivity, performed well in repeated tensile-durability experiments of 30% to 100 times, and produced a bow-tie antenna for the above electrodes. As a result of tensing up to 35% through a Network-Analyzer, there was no performance change in the resonance-frequency or return-loss values, and excellent electrodes were developed that would achieve excellent performance even if they are applied in the sub-frequency area of 5G-antennas in the future.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 12\",\"pages\":\"5881-5889\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Printed Electrode for High-Performance Bow-Tie Antenna by Photonic Sintering Process.
Recently, flexible electronic device technology has evolved beyond curved devices with the development of flexible/stretchable devices that can be crumpled or stretched. Both elasticity and durability are essential for these devices, which should have high-conductivity for antennas and repeatability for sensors. In addition, electronic-skins, which can have a direct impact on the human-body, should be harmless to the human-body and should not be deformed by contact with sweat or organic matter. In this study, PDMS substrates were used to satisfy the above conditions. PDMS is used to fabricate human-friendly, flexible/stretchable substrates, and it has excellent repeat durability characteristics. To improve the adhesion of these PDMS films and electrodes, conductive paste was produced based on PDMS resins of the same properties. In addition, two types of Ag particles were selected as conductive fillers because the electrode characteristics of the antenna application requires excellent conductivity, and conductive paste were produced using flake Ag, which could affect conductivity, and Ag nanoparticles that affect stretchability and repeatability. The paste was applied using a high-efficiency printing technique. The printed electrodes were cured in a thermal oven. For higher conductivity, photonic-sintering was carried out during post-processing. As a result, 1.1117×106 (S/m) had excellent conductivity, performed well in repeated tensile-durability experiments of 30% to 100 times, and produced a bow-tie antenna for the above electrodes. As a result of tensing up to 35% through a Network-Analyzer, there was no performance change in the resonance-frequency or return-loss values, and excellent electrodes were developed that would achieve excellent performance even if they are applied in the sub-frequency area of 5G-antennas in the future.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.