{"title":"绿色和简单合成用于传感和细胞成像的光致发光可调碳点。","authors":"Dong Sun, Shu-Jun Li, Chun-Feng Wang, Tian-Tian Liu, Guang-Yue Bai, Ke-Lei Zhuo","doi":"10.1166/jnn.2021.19530","DOIUrl":null,"url":null,"abstract":"<p><p>Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B-N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg<sup>2+</sup> determination and fluorescent imaging reagent in cells.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6101-6110"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green and Simple Synthesis of Photoluminescence-Tunable Carbon Dots for Sensing and Cell Imaging Applications.\",\"authors\":\"Dong Sun, Shu-Jun Li, Chun-Feng Wang, Tian-Tian Liu, Guang-Yue Bai, Ke-Lei Zhuo\",\"doi\":\"10.1166/jnn.2021.19530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B-N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg<sup>2+</sup> determination and fluorescent imaging reagent in cells.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 12\",\"pages\":\"6101-6110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green and Simple Synthesis of Photoluminescence-Tunable Carbon Dots for Sensing and Cell Imaging Applications.
Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B-N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg2+ determination and fluorescent imaging reagent in cells.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.