{"title":"通过发射波场和接收波场的交叉相关性,对任意传输进行基于傅立叶的合成孔径成像。","authors":"Rehman Ali","doi":"10.1177/01617346211026350","DOIUrl":null,"url":null,"abstract":"<p><p>Investigations into Fourier beamforming for medical ultrasound imaging have largely been limited to plane-wave and single-element transmissions. The main aim of this work is to generalize Fourier beamforming to enable synthetic aperture imaging with arbitrary transmit sequences. When applied to focused transmit beams, the proposed approach yields a full-waveform-based alternative to virtual-source synthetic aperture, which has implications for both coherence imaging and sound speed estimation. When compared to virtual-source synthetic aperture and retrospective encoding for conventional ultrasound sequences (REFoCUS), the proposed imaging technique shows an 8.6 and 3.8 dB improvement in contrast over virtual source synthetic aperture and REFoCUS, respectively, and a 55% improvement in point target resolution over virtual source synthetic aperture. The proposed image reconstruction technique also demonstrates general imaging improvements in vivo, while avoiding limitations seen in prior techniques.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fourier-based Synthetic-aperture Imaging for Arbitrary Transmissions by Cross-correlation of Transmitted and Received Wave-fields.\",\"authors\":\"Rehman Ali\",\"doi\":\"10.1177/01617346211026350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Investigations into Fourier beamforming for medical ultrasound imaging have largely been limited to plane-wave and single-element transmissions. The main aim of this work is to generalize Fourier beamforming to enable synthetic aperture imaging with arbitrary transmit sequences. When applied to focused transmit beams, the proposed approach yields a full-waveform-based alternative to virtual-source synthetic aperture, which has implications for both coherence imaging and sound speed estimation. When compared to virtual-source synthetic aperture and retrospective encoding for conventional ultrasound sequences (REFoCUS), the proposed imaging technique shows an 8.6 and 3.8 dB improvement in contrast over virtual source synthetic aperture and REFoCUS, respectively, and a 55% improvement in point target resolution over virtual source synthetic aperture. The proposed image reconstruction technique also demonstrates general imaging improvements in vivo, while avoiding limitations seen in prior techniques.</p>\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01617346211026350\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346211026350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Fourier-based Synthetic-aperture Imaging for Arbitrary Transmissions by Cross-correlation of Transmitted and Received Wave-fields.
Investigations into Fourier beamforming for medical ultrasound imaging have largely been limited to plane-wave and single-element transmissions. The main aim of this work is to generalize Fourier beamforming to enable synthetic aperture imaging with arbitrary transmit sequences. When applied to focused transmit beams, the proposed approach yields a full-waveform-based alternative to virtual-source synthetic aperture, which has implications for both coherence imaging and sound speed estimation. When compared to virtual-source synthetic aperture and retrospective encoding for conventional ultrasound sequences (REFoCUS), the proposed imaging technique shows an 8.6 and 3.8 dB improvement in contrast over virtual source synthetic aperture and REFoCUS, respectively, and a 55% improvement in point target resolution over virtual source synthetic aperture. The proposed image reconstruction technique also demonstrates general imaging improvements in vivo, while avoiding limitations seen in prior techniques.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging