Elisabeth Roesch, Christopher Rackauckas, Michael P H Stumpf
{"title":"基于配置的神经常微分方程训练。","authors":"Elisabeth Roesch, Christopher Rackauckas, Michael P H Stumpf","doi":"10.1515/sagmb-2020-0025","DOIUrl":null,"url":null,"abstract":"<p><p>The predictive power of machine learning models often exceeds that of mechanistic modeling approaches. However, the interpretability of purely data-driven models, without any mechanistic basis is often complicated, and predictive power by itself can be a poor metric by which we might want to judge different methods. In this work, we focus on the relatively new modeling techniques of neural ordinary differential equations. We discuss how they relate to machine learning and mechanistic models, with the potential to narrow the gulf between these two frameworks: they constitute a class of hybrid model that integrates ideas from data-driven and dynamical systems approaches. Training neural ODEs as representations of dynamical systems data has its own specific demands, and we here propose a collocation scheme as a fast and efficient training strategy. This alleviates the need for costly ODE solvers. We illustrate the advantages that collocation approaches offer, as well as their robustness to qualitative features of a dynamical system, and the quantity and quality of observational data. We focus on systems that exemplify some of the hallmarks of complex dynamical systems encountered in systems biology, and we map out how these methods can be used in the analysis of mathematical models of cellular and physiological processes.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"20 2","pages":"37-49"},"PeriodicalIF":0.8000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2020-0025","citationCount":"17","resultStr":"{\"title\":\"Collocation based training of neural ordinary differential equations.\",\"authors\":\"Elisabeth Roesch, Christopher Rackauckas, Michael P H Stumpf\",\"doi\":\"10.1515/sagmb-2020-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The predictive power of machine learning models often exceeds that of mechanistic modeling approaches. However, the interpretability of purely data-driven models, without any mechanistic basis is often complicated, and predictive power by itself can be a poor metric by which we might want to judge different methods. In this work, we focus on the relatively new modeling techniques of neural ordinary differential equations. We discuss how they relate to machine learning and mechanistic models, with the potential to narrow the gulf between these two frameworks: they constitute a class of hybrid model that integrates ideas from data-driven and dynamical systems approaches. Training neural ODEs as representations of dynamical systems data has its own specific demands, and we here propose a collocation scheme as a fast and efficient training strategy. This alleviates the need for costly ODE solvers. We illustrate the advantages that collocation approaches offer, as well as their robustness to qualitative features of a dynamical system, and the quantity and quality of observational data. We focus on systems that exemplify some of the hallmarks of complex dynamical systems encountered in systems biology, and we map out how these methods can be used in the analysis of mathematical models of cellular and physiological processes.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"20 2\",\"pages\":\"37-49\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2020-0025\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2020-0025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2020-0025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Collocation based training of neural ordinary differential equations.
The predictive power of machine learning models often exceeds that of mechanistic modeling approaches. However, the interpretability of purely data-driven models, without any mechanistic basis is often complicated, and predictive power by itself can be a poor metric by which we might want to judge different methods. In this work, we focus on the relatively new modeling techniques of neural ordinary differential equations. We discuss how they relate to machine learning and mechanistic models, with the potential to narrow the gulf between these two frameworks: they constitute a class of hybrid model that integrates ideas from data-driven and dynamical systems approaches. Training neural ODEs as representations of dynamical systems data has its own specific demands, and we here propose a collocation scheme as a fast and efficient training strategy. This alleviates the need for costly ODE solvers. We illustrate the advantages that collocation approaches offer, as well as their robustness to qualitative features of a dynamical system, and the quantity and quality of observational data. We focus on systems that exemplify some of the hallmarks of complex dynamical systems encountered in systems biology, and we map out how these methods can be used in the analysis of mathematical models of cellular and physiological processes.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.