正常亲本(栽培大豆和野生大豆)杂交获得的F6矮化大豆系基因组变异分析。

Q2 Agricultural and Biological Sciences Genomics and Informatics Pub Date : 2021-06-01 Epub Date: 2021-06-30 DOI:10.5808/gi.21024
Neha Samir Roy, Yong-Wook Ban, Hana Yoo, Rahul Vasudeo Ramekar, Eun Ju Cheong, Nam-Il Park, Jong Kuk Na, Kyong-Cheul Park, Ik-Young Choi
{"title":"正常亲本(栽培大豆和野生大豆)杂交获得的F6矮化大豆系基因组变异分析。","authors":"Neha Samir Roy,&nbsp;Yong-Wook Ban,&nbsp;Hana Yoo,&nbsp;Rahul Vasudeo Ramekar,&nbsp;Eun Ju Cheong,&nbsp;Nam-Il Park,&nbsp;Jong Kuk Na,&nbsp;Kyong-Cheul Park,&nbsp;Ik-Young Choi","doi":"10.5808/gi.21024","DOIUrl":null,"url":null,"abstract":"<p><p>Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"19 2","pages":"e19"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261272/pdf/","citationCount":"2","resultStr":"{\"title\":\"Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean).\",\"authors\":\"Neha Samir Roy,&nbsp;Yong-Wook Ban,&nbsp;Hana Yoo,&nbsp;Rahul Vasudeo Ramekar,&nbsp;Eun Ju Cheong,&nbsp;Nam-Il Park,&nbsp;Jong Kuk Na,&nbsp;Kyong-Cheul Park,&nbsp;Ik-Young Choi\",\"doi\":\"10.5808/gi.21024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.</p>\",\"PeriodicalId\":36591,\"journal\":{\"name\":\"Genomics and Informatics\",\"volume\":\"19 2\",\"pages\":\"e19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261272/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5808/gi.21024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.21024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

株高是植物构型的重要组成部分,对作物育种和产量有重要影响。我们研究了96.8%纯合子基因型的F5重组自交系(RILs)的DNA变异。在这里,我们报告了从一个单一亲本中收获的4个品系的正常成员和矮秆成员之间的DNA变异,这些品系是由甘氨酸max var. Peking和甘氨酸大豆IT182936杂交而来的F6 RIL群体。进行全基因组测序,比较正常和矮秆样品的全基因组DNA变异。矮秆系和半矮秆系中均存在大量的DNA变异,矮秆系中至少每3.68 kb存在1个单核苷酸多态性(SNP),全基因组中每11.13 kb存在1个SNP。这个值比F6群体中预期的DNA变异高2.18倍。在矮化系1282和矮化系1303的编码区分别发现186个和241个单核苷酸多态性,在矮化系和正常系中各发现33个同源非同义单核苷酸多态性出现在同一位点。其中,有5个snp位于1282 ~ 1303行之间的相同位置。本研究结果为进一步认识大豆株高遗传和作物育种提供了重要信息。这些多态性可以为植物育种家、遗传学家和生物学家在未来的分子生物学和育种项目中提供有用的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean).

Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics and Informatics
Genomics and Informatics Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Comparison of digital PCR platforms using the molecular marker. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1