Yunchao Zheng , Shan Li , Jianzhong Huang , Haowei Fu , Libin Zhou , Yoshiya Furusawa , Qingyao Shu
{"title":"离子束辐射诱导水稻遗传结构变异的鉴定与表征","authors":"Yunchao Zheng , Shan Li , Jianzhong Huang , Haowei Fu , Libin Zhou , Yoshiya Furusawa , Qingyao Shu","doi":"10.1016/j.mrfmmm.2021.111757","DOIUrl":null,"url":null,"abstract":"<div><p>High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M<sub>4</sub> plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (<sup>40</sup>Ar<sup>18+</sup>), carbon (<sup>12</sup>C<sup>6+</sup>) and neon (<sup>20</sup>Ne<sup>10+</sup>) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"823 ","pages":"Article 111757"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111757","citationCount":"5","resultStr":"{\"title\":\"Identification and characterization of inheritable structural variations induced by ion beam radiations in rice\",\"authors\":\"Yunchao Zheng , Shan Li , Jianzhong Huang , Haowei Fu , Libin Zhou , Yoshiya Furusawa , Qingyao Shu\",\"doi\":\"10.1016/j.mrfmmm.2021.111757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M<sub>4</sub> plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (<sup>40</sup>Ar<sup>18+</sup>), carbon (<sup>12</sup>C<sup>6+</sup>) and neon (<sup>20</sup>Ne<sup>10+</sup>) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.</p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"823 \",\"pages\":\"Article 111757\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111757\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510721000208\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510721000208","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification and characterization of inheritable structural variations induced by ion beam radiations in rice
High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M4 plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (40Ar18+), carbon (12C6+) and neon (20Ne10+) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.