Kim Birnie-Gauvin, Martin H Larsen, Kathryn S Peiman, Jonathan D Midwood, Alexander D M Wilson, Steven J Cooke, Kim Aarestrup
{"title":"没有证据表明野生鲑鱼有长期的携带效应。","authors":"Kim Birnie-Gauvin, Martin H Larsen, Kathryn S Peiman, Jonathan D Midwood, Alexander D M Wilson, Steven J Cooke, Kim Aarestrup","doi":"10.1086/716000","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractEarly-life experiences can shape life histories and population dynamics of wild animals. To examine whether stressful stimuli experienced in early life resulted in carryover effects in later life stages, we conducted several experimental manipulations and then monitored wild fish with passive integrated transponder tags during juvenile out-migration and adult return migration. In total, 3,217 juvenile brown trout (<i>Salmo trutta</i>) were subjected to one of six manipulations: chase to exhaustion, thermal challenge, food deprivation, low-concentration cortisol injection, high-concentration cortisol injection, and sham injection, plus a control group. Cortisol and food deprivation treatments were previously shown to have short-term effects on juveniles, such as lower survival to out-migration and changes in migration timing. However, it remained unknown whether any of the six manipulations had effects that carried over into the adult phase. We therefore investigated whether these extrinsic manipulations, as well as intrinsic factors (size and condition), affected probability of return as adults and time spent at sea. Of the 1,273 fish that out-migrated, 146 returned as adults. We failed to detect any effect of treatments on return rates, while high-concentration cortisol weakly affected time spent at sea in one tagging event. We also found that juvenile condition was positively correlated to likelihood of adult return in only one tagging event. Overall, our findings did not identify either intrinsic factors or extrinsic stressful early-life experiences that have strong effects on fish that survive to adulthood. This suggests that some species may be more resilient than others to stressful stimuli encountered early in life.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"94 5","pages":"319-329"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/716000","citationCount":"0","resultStr":"{\"title\":\"No Evidence for Long-Term Carryover Effects in a Wild Salmonid Fish.\",\"authors\":\"Kim Birnie-Gauvin, Martin H Larsen, Kathryn S Peiman, Jonathan D Midwood, Alexander D M Wilson, Steven J Cooke, Kim Aarestrup\",\"doi\":\"10.1086/716000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractEarly-life experiences can shape life histories and population dynamics of wild animals. To examine whether stressful stimuli experienced in early life resulted in carryover effects in later life stages, we conducted several experimental manipulations and then monitored wild fish with passive integrated transponder tags during juvenile out-migration and adult return migration. In total, 3,217 juvenile brown trout (<i>Salmo trutta</i>) were subjected to one of six manipulations: chase to exhaustion, thermal challenge, food deprivation, low-concentration cortisol injection, high-concentration cortisol injection, and sham injection, plus a control group. Cortisol and food deprivation treatments were previously shown to have short-term effects on juveniles, such as lower survival to out-migration and changes in migration timing. However, it remained unknown whether any of the six manipulations had effects that carried over into the adult phase. We therefore investigated whether these extrinsic manipulations, as well as intrinsic factors (size and condition), affected probability of return as adults and time spent at sea. Of the 1,273 fish that out-migrated, 146 returned as adults. We failed to detect any effect of treatments on return rates, while high-concentration cortisol weakly affected time spent at sea in one tagging event. We also found that juvenile condition was positively correlated to likelihood of adult return in only one tagging event. Overall, our findings did not identify either intrinsic factors or extrinsic stressful early-life experiences that have strong effects on fish that survive to adulthood. This suggests that some species may be more resilient than others to stressful stimuli encountered early in life.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"94 5\",\"pages\":\"319-329\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/716000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/716000\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/716000","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
No Evidence for Long-Term Carryover Effects in a Wild Salmonid Fish.
AbstractEarly-life experiences can shape life histories and population dynamics of wild animals. To examine whether stressful stimuli experienced in early life resulted in carryover effects in later life stages, we conducted several experimental manipulations and then monitored wild fish with passive integrated transponder tags during juvenile out-migration and adult return migration. In total, 3,217 juvenile brown trout (Salmo trutta) were subjected to one of six manipulations: chase to exhaustion, thermal challenge, food deprivation, low-concentration cortisol injection, high-concentration cortisol injection, and sham injection, plus a control group. Cortisol and food deprivation treatments were previously shown to have short-term effects on juveniles, such as lower survival to out-migration and changes in migration timing. However, it remained unknown whether any of the six manipulations had effects that carried over into the adult phase. We therefore investigated whether these extrinsic manipulations, as well as intrinsic factors (size and condition), affected probability of return as adults and time spent at sea. Of the 1,273 fish that out-migrated, 146 returned as adults. We failed to detect any effect of treatments on return rates, while high-concentration cortisol weakly affected time spent at sea in one tagging event. We also found that juvenile condition was positively correlated to likelihood of adult return in only one tagging event. Overall, our findings did not identify either intrinsic factors or extrinsic stressful early-life experiences that have strong effects on fish that survive to adulthood. This suggests that some species may be more resilient than others to stressful stimuli encountered early in life.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.