Juan J Imbernón, Carmen Aguirre, Carlos J Gómez-Ariza
{"title":"选择性定向遗忘是由外侧前额皮质介导的:经颅直流电刺激的初步证据。","authors":"Juan J Imbernón, Carmen Aguirre, Carlos J Gómez-Ariza","doi":"10.1080/17588928.2021.1953973","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research has shown that providing a cue to selectively forget one subset of previously learned facts may result in specific forgetting of this information. Behavioral evidence suggests that this selective directed forgetting effect relies on executive control and is a direct consequence of active, rather than passive, mechanisms. To date, however, no previous research has addressed the neural underpinnings of selective directed forgetting. Since the lateral prefrontal cortex is thought to mediate motivated forgetting by exerting top-down control over the brain structures that underpin memory representations, the present study aimed to test the hypothesis that selective directed forgetting is prefrontally driven. Specifically, we used transcranial direct current stimulation to disrupt activity in the dorsolateral prefrontal cortex, using a stimulation protocol that has already been shown to be effective in this regard. Our results reveal that, in contrast to sham stimulation, real stimulation abolished selective directed forgetting. Additionally, real stimulation hindered performance in an updating working memory task thought to recruit the lateral prefrontal cortex. These findings, complementing others obtained with a variety of memory control tasks, support the hypothesis that memory downregulation is achieved by control processes mediated by the right lateral prefrontal cortex.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":"13 2","pages":"77-86"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17588928.2021.1953973","citationCount":"2","resultStr":"{\"title\":\"Selective directed forgetting is mediated by the lateral prefrontal cortex: Preliminary evidence with transcranial direct current stimulation.\",\"authors\":\"Juan J Imbernón, Carmen Aguirre, Carlos J Gómez-Ariza\",\"doi\":\"10.1080/17588928.2021.1953973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent research has shown that providing a cue to selectively forget one subset of previously learned facts may result in specific forgetting of this information. Behavioral evidence suggests that this selective directed forgetting effect relies on executive control and is a direct consequence of active, rather than passive, mechanisms. To date, however, no previous research has addressed the neural underpinnings of selective directed forgetting. Since the lateral prefrontal cortex is thought to mediate motivated forgetting by exerting top-down control over the brain structures that underpin memory representations, the present study aimed to test the hypothesis that selective directed forgetting is prefrontally driven. Specifically, we used transcranial direct current stimulation to disrupt activity in the dorsolateral prefrontal cortex, using a stimulation protocol that has already been shown to be effective in this regard. Our results reveal that, in contrast to sham stimulation, real stimulation abolished selective directed forgetting. Additionally, real stimulation hindered performance in an updating working memory task thought to recruit the lateral prefrontal cortex. These findings, complementing others obtained with a variety of memory control tasks, support the hypothesis that memory downregulation is achieved by control processes mediated by the right lateral prefrontal cortex.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\"13 2\",\"pages\":\"77-86\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17588928.2021.1953973\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2021.1953973\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2021.1953973","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Selective directed forgetting is mediated by the lateral prefrontal cortex: Preliminary evidence with transcranial direct current stimulation.
Recent research has shown that providing a cue to selectively forget one subset of previously learned facts may result in specific forgetting of this information. Behavioral evidence suggests that this selective directed forgetting effect relies on executive control and is a direct consequence of active, rather than passive, mechanisms. To date, however, no previous research has addressed the neural underpinnings of selective directed forgetting. Since the lateral prefrontal cortex is thought to mediate motivated forgetting by exerting top-down control over the brain structures that underpin memory representations, the present study aimed to test the hypothesis that selective directed forgetting is prefrontally driven. Specifically, we used transcranial direct current stimulation to disrupt activity in the dorsolateral prefrontal cortex, using a stimulation protocol that has already been shown to be effective in this regard. Our results reveal that, in contrast to sham stimulation, real stimulation abolished selective directed forgetting. Additionally, real stimulation hindered performance in an updating working memory task thought to recruit the lateral prefrontal cortex. These findings, complementing others obtained with a variety of memory control tasks, support the hypothesis that memory downregulation is achieved by control processes mediated by the right lateral prefrontal cortex.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.