探索人类大脑中的波纹波。

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Clinical EEG and Neuroscience Pub Date : 2023-11-01 Epub Date: 2021-07-21 DOI:10.1177/15500594211034371
Shunsuke Takagi
{"title":"探索人类大脑中的波纹波。","authors":"Shunsuke Takagi","doi":"10.1177/15500594211034371","DOIUrl":null,"url":null,"abstract":"<p><p>Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/15500594211034371","citationCount":"3","resultStr":"{\"title\":\"Exploring Ripple Waves in the Human Brain.\",\"authors\":\"Shunsuke Takagi\",\"doi\":\"10.1177/15500594211034371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/15500594211034371\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594211034371\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594211034371","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 3

摘要

波纹很短(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Ripple Waves in the Human Brain.

Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical EEG and Neuroscience
Clinical EEG and Neuroscience 医学-临床神经学
CiteScore
5.20
自引率
5.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.
期刊最新文献
Ikelos-RWA. Validation of an Automatic Tool to Quantify REM Sleep Without Atonia. Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth. The Clinical Utility of Finding Unexpected Subclinical Spikes Detected by High-Density EEG During Neurodiagnostic Investigations Comparative Analysis of LORETA Z Score Neurofeedback and Cognitive Rehabilitation on Quality of Life and Response Inhibition in Individuals with Opioid Addiction Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1