俄亥俄州阿片类药物流行的多变量时空模型:一个因素模型方法。

IF 1.6 Q3 HEALTH CARE SCIENCES & SERVICES Health Services and Outcomes Research Methodology Pub Date : 2021-03-01 Epub Date: 2020-11-05 DOI:10.1007/s10742-020-00227-3
David Kline, Yixuan Ji, Staci Hepler
{"title":"俄亥俄州阿片类药物流行的多变量时空模型:一个因素模型方法。","authors":"David Kline,&nbsp;Yixuan Ji,&nbsp;Staci Hepler","doi":"10.1007/s10742-020-00227-3","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid misuse is a significant public health issue and a national epidemic with a high prevalence of associated morbidity and mortality. The epidemic is particularly severe in Ohio which has some of the highest overdose rates in the country. It is important to understand spatial and temporal trends of the opioid epidemic to learn more about areas that are most affected and to inform potential community interventions and resource allocation. We propose a multivariate spatio-temporal model to leverage existing surveillance measures, opioid-associated deaths and treatment admissions, to learn about the underlying epidemic for counties in Ohio. We do this using a temporally varying spatial factor that synthesizes information from both counts to estimate common underlying risk which we interpret as the burden of the epidemic. We demonstrate the use of this model with county-level data from 2007-2018 in Ohio. Through our model estimates, we identify counties with above and below average burden and examine how those regions have shifted over time given overall statewide trends. Specifically, we highlight the sustained above average burden of the opioid epidemic on southern Ohio throughout the 12 years examined.</p>","PeriodicalId":45600,"journal":{"name":"Health Services and Outcomes Research Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10742-020-00227-3","citationCount":"1","resultStr":"{\"title\":\"A multivariate spatio-temporal model of the opioid epidemic in Ohio: A factor model approach.\",\"authors\":\"David Kline,&nbsp;Yixuan Ji,&nbsp;Staci Hepler\",\"doi\":\"10.1007/s10742-020-00227-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Opioid misuse is a significant public health issue and a national epidemic with a high prevalence of associated morbidity and mortality. The epidemic is particularly severe in Ohio which has some of the highest overdose rates in the country. It is important to understand spatial and temporal trends of the opioid epidemic to learn more about areas that are most affected and to inform potential community interventions and resource allocation. We propose a multivariate spatio-temporal model to leverage existing surveillance measures, opioid-associated deaths and treatment admissions, to learn about the underlying epidemic for counties in Ohio. We do this using a temporally varying spatial factor that synthesizes information from both counts to estimate common underlying risk which we interpret as the burden of the epidemic. We demonstrate the use of this model with county-level data from 2007-2018 in Ohio. Through our model estimates, we identify counties with above and below average burden and examine how those regions have shifted over time given overall statewide trends. Specifically, we highlight the sustained above average burden of the opioid epidemic on southern Ohio throughout the 12 years examined.</p>\",\"PeriodicalId\":45600,\"journal\":{\"name\":\"Health Services and Outcomes Research Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10742-020-00227-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Services and Outcomes Research Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10742-020-00227-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services and Outcomes Research Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-020-00227-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

摘要

阿片类药物滥用是一个重大的公共卫生问题,也是一种全国性流行病,相关发病率和死亡率都很高。这种流行病在俄亥俄州尤为严重,该州的吸毒过量率是全国最高的。必须了解阿片类药物流行的时空趋势,以便更多地了解受影响最严重的地区,并为可能的社区干预措施和资源分配提供信息。我们提出了一个多变量时空模型,以利用现有的监测措施、阿片类药物相关的死亡和治疗入院情况,了解俄亥俄州各县潜在的流行病。我们使用一个时变的空间因子,该因子综合了来自两个计数的信息,以估计共同的潜在风险,我们将其解释为流行病的负担。我们用俄亥俄州2007-2018年的县级数据证明了该模型的使用。通过我们的模型估计,我们确定了高于和低于平均负担的县,并研究了这些地区在全州范围内的总体趋势下如何随着时间的推移而变化。具体而言,我们强调了在调查的12年中,俄亥俄州南部阿片类药物流行病的持续高于平均水平的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multivariate spatio-temporal model of the opioid epidemic in Ohio: A factor model approach.

Opioid misuse is a significant public health issue and a national epidemic with a high prevalence of associated morbidity and mortality. The epidemic is particularly severe in Ohio which has some of the highest overdose rates in the country. It is important to understand spatial and temporal trends of the opioid epidemic to learn more about areas that are most affected and to inform potential community interventions and resource allocation. We propose a multivariate spatio-temporal model to leverage existing surveillance measures, opioid-associated deaths and treatment admissions, to learn about the underlying epidemic for counties in Ohio. We do this using a temporally varying spatial factor that synthesizes information from both counts to estimate common underlying risk which we interpret as the burden of the epidemic. We demonstrate the use of this model with county-level data from 2007-2018 in Ohio. Through our model estimates, we identify counties with above and below average burden and examine how those regions have shifted over time given overall statewide trends. Specifically, we highlight the sustained above average burden of the opioid epidemic on southern Ohio throughout the 12 years examined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Services and Outcomes Research Methodology
Health Services and Outcomes Research Methodology HEALTH CARE SCIENCES & SERVICES-
CiteScore
3.40
自引率
6.70%
发文量
28
期刊介绍: The journal reflects the multidisciplinary nature of the field of health services and outcomes research. It addresses the needs of multiple, interlocking communities, including methodologists in statistics, econometrics, social and behavioral sciences; designers and analysts of health policy and health services research projects; and health care providers and policy makers who need to properly understand and evaluate the results of published research. The journal strives to enhance the level of methodologic rigor in health services and outcomes research and contributes to the development of methodologic standards in the field. In pursuing its main objective, the journal also provides a meeting ground for researchers from a number of traditional disciplines and fosters the development of new quantitative, qualitative, and mixed methods by statisticians, econometricians, health services researchers, and methodologists in other fields. Health Services and Outcomes Research Methodology publishes: Research papers on quantitative, qualitative, and mixed methods; Case Studies describing applications of quantitative and qualitative methodology in health services and outcomes research; Review Articles synthesizing and popularizing methodologic developments; Tutorials; Articles on computational issues and software reviews; Book reviews; and Notices. Special issues will be devoted to papers presented at important workshops and conferences.
期刊最新文献
Limitations of the Inter-Unit Reliability: A Set of Practical Examples. Home- and community-based care in the new generation of Medicaid administrative data Entropy balancing versus vector-based kernel weighting for causal inference in categorical treatment settings A terminal trend model for longitudinal medical cost data and survival Multimodal mental state analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1