鼠李糖基化蛋白的破坏影响申克孢子菌与宿主的相互作用

Q1 Immunology and Microbiology Cell Surface Pub Date : 2021-12-01 DOI:10.1016/j.tcsw.2021.100058
Alma K. Tamez-Castrellón , Samantha L. van der Beek , Luz A. López-Ramírez , Iván Martínez-Duncker , Nancy E. Lozoya-Pérez , Nina M. van Sorge , Héctor M. Mora-Montes
{"title":"鼠李糖基化蛋白的破坏影响申克孢子菌与宿主的相互作用","authors":"Alma K. Tamez-Castrellón ,&nbsp;Samantha L. van der Beek ,&nbsp;Luz A. López-Ramírez ,&nbsp;Iván Martínez-Duncker ,&nbsp;Nancy E. Lozoya-Pérez ,&nbsp;Nina M. van Sorge ,&nbsp;Héctor M. Mora-Montes","doi":"10.1016/j.tcsw.2021.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Sporotrichosis is a fungal disease caused by the members of the <em>Sporothrix</em> pathogenic clade, and one of the etiological agents is <em>Sporothrix schenckii.</em> The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the <em>S.<!--> <!-->schenckii</em>-host interaction. We identified and silenced in <em>S. schenckii</em> a functional ortholog of the bacterial <em>rmlD</em> gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. <em>RmlD</em> silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the <em>RmlD</em> silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the <em>S. schenckii</em> virulence in the <em>G. mellonella</em> model of infection.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"7 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcsw.2021.100058","citationCount":"13","resultStr":"{\"title\":\"Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction\",\"authors\":\"Alma K. Tamez-Castrellón ,&nbsp;Samantha L. van der Beek ,&nbsp;Luz A. López-Ramírez ,&nbsp;Iván Martínez-Duncker ,&nbsp;Nancy E. Lozoya-Pérez ,&nbsp;Nina M. van Sorge ,&nbsp;Héctor M. Mora-Montes\",\"doi\":\"10.1016/j.tcsw.2021.100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sporotrichosis is a fungal disease caused by the members of the <em>Sporothrix</em> pathogenic clade, and one of the etiological agents is <em>Sporothrix schenckii.</em> The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the <em>S.<!--> <!-->schenckii</em>-host interaction. We identified and silenced in <em>S. schenckii</em> a functional ortholog of the bacterial <em>rmlD</em> gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. <em>RmlD</em> silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the <em>RmlD</em> silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the <em>S. schenckii</em> virulence in the <em>G. mellonella</em> model of infection.</p></div>\",\"PeriodicalId\":36539,\"journal\":{\"name\":\"Cell Surface\",\"volume\":\"7 \",\"pages\":\"Article 100058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tcsw.2021.100058\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468233021000116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233021000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 13

摘要

孢子菌病是由孢子丝菌致病性分支成员引起的一种真菌疾病,病原之一是申克孢子丝菌。这种生物的细胞壁先前已被分析过,目前已知含有由几丁质和β -葡聚糖组成的内层,以及由甘露糖和鼠李糖修饰的糖蛋白外层。l -鼠李糖生物合成途径在细菌中很常见,但在真菌界的成员中很少见。因此,在本研究中,我们旨在破坏这一代谢途径,以评估鼠李糖在申克沙门氏菌-宿主相互作用中的贡献。我们在申氏杆菌中鉴定并沉默了细菌rmlD基因的功能同源物,该基因编码合成核苷酸激活的l -鼠李糖所需的还原酶。RmlD沉默不影响真菌的生长和形态,但降低了细胞壁鼠李糖含量。代偿性地,β-1,3-葡聚糖水平增加,更多地暴露在细胞表面。此外,当与人外周血单个核细胞孵育时,与野生型菌株相比,RmlD沉默突变体刺激细胞因子产生的差异,降低TNFα和IL-6水平,增加IL-1 β和IL-10的产生。与人单核细胞来源的巨噬细胞孵育后,沉默菌株比野生型菌株更有效地被吞噬。在这两种情况下,我们的数据表明鼠李糖低聚糖是与TLR4相互作用的配体。最后,我们的研究结果表明,细胞壁鼠李糖是申克氏沙门氏菌感染模型中毒力所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction

Sporotrichosis is a fungal disease caused by the members of the Sporothrix pathogenic clade, and one of the etiological agents is Sporothrix schenckii. The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the S. schenckii-host interaction. We identified and silenced in S. schenckii a functional ortholog of the bacterial rmlD gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. RmlD silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the RmlD silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the S. schenckii virulence in the G. mellonella model of infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Surface
Cell Surface Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
6.10
自引率
0.00%
发文量
18
审稿时长
49 days
期刊最新文献
Comprehensive phenotypic analysis of multiple gene deletions of α-glucan synthase and Crh-transglycosylase gene families in Aspergillus niger highlighting the versatility of the fungal cell wall Sporothrix brasiliensis Gp70 is a cell wall protein required for adhesion, proper interaction with innate immune cells, and virulence Characterization of the Neurospora crassa GH72 family of Laminarin/Lichenin transferases and their roles in cell wall biogenesis Endocytic tethers modulate unconventional GAPDH secretion Mucilicious methods: Navigating the tools developed to Arabidopsis Seed Coat Mucilage analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1