人工智能与肾移植。

Nurhan Seyahi, Seyda Gul Ozcan
{"title":"人工智能与肾移植。","authors":"Nurhan Seyahi,&nbsp;Seyda Gul Ozcan","doi":"10.5500/wjt.v11.i7.277","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence and its primary subfield, machine learning, have started to gain widespread use in medicine, including the field of kidney transplantation. We made a review of the literature that used artificial intelligence techniques in kidney transplantation. We located six main areas of kidney transplantation that artificial intelligence studies are focused on: Radiological evaluation of the allograft, pathological evaluation including molecular evaluation of the tissue, prediction of graft survival, optimizing the dose of immunosuppression, diagnosis of rejection, and prediction of early graft function. Machine learning techniques provide increased automation leading to faster evaluation and standardization, and show better performance compared to traditional statistical analysis. Artificial intelligence leads to improved computer-aided diagnostics and quantifiable personalized predictions that will improve personalized patient care.</p>","PeriodicalId":68893,"journal":{"name":"世界移植杂志(英文版)","volume":"11 7","pages":"277-289"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/ed/WJT-11-277.PMC8290997.pdf","citationCount":"9","resultStr":"{\"title\":\"Artificial intelligence and kidney transplantation.\",\"authors\":\"Nurhan Seyahi,&nbsp;Seyda Gul Ozcan\",\"doi\":\"10.5500/wjt.v11.i7.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence and its primary subfield, machine learning, have started to gain widespread use in medicine, including the field of kidney transplantation. We made a review of the literature that used artificial intelligence techniques in kidney transplantation. We located six main areas of kidney transplantation that artificial intelligence studies are focused on: Radiological evaluation of the allograft, pathological evaluation including molecular evaluation of the tissue, prediction of graft survival, optimizing the dose of immunosuppression, diagnosis of rejection, and prediction of early graft function. Machine learning techniques provide increased automation leading to faster evaluation and standardization, and show better performance compared to traditional statistical analysis. Artificial intelligence leads to improved computer-aided diagnostics and quantifiable personalized predictions that will improve personalized patient care.</p>\",\"PeriodicalId\":68893,\"journal\":{\"name\":\"世界移植杂志(英文版)\",\"volume\":\"11 7\",\"pages\":\"277-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/ed/WJT-11-277.PMC8290997.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"世界移植杂志(英文版)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5500/wjt.v11.i7.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界移植杂志(英文版)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5500/wjt.v11.i7.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人工智能及其主要子领域机器学习已经开始在医学领域获得广泛应用,包括肾移植领域。我们对人工智能技术在肾移植中的应用文献进行了综述。我们确定了人工智能研究关注的肾移植的六个主要领域:同种异体移植物的放射学评估、病理评估(包括组织的分子评估)、移植物存活预测、免疫抑制剂量优化、排斥诊断和早期移植物功能预测。机器学习技术提供了更高的自动化,从而更快地进行评估和标准化,并且与传统的统计分析相比显示出更好的性能。人工智能将改进计算机辅助诊断和可量化的个性化预测,从而改善个性化的患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence and kidney transplantation.

Artificial intelligence and its primary subfield, machine learning, have started to gain widespread use in medicine, including the field of kidney transplantation. We made a review of the literature that used artificial intelligence techniques in kidney transplantation. We located six main areas of kidney transplantation that artificial intelligence studies are focused on: Radiological evaluation of the allograft, pathological evaluation including molecular evaluation of the tissue, prediction of graft survival, optimizing the dose of immunosuppression, diagnosis of rejection, and prediction of early graft function. Machine learning techniques provide increased automation leading to faster evaluation and standardization, and show better performance compared to traditional statistical analysis. Artificial intelligence leads to improved computer-aided diagnostics and quantifiable personalized predictions that will improve personalized patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
364
期刊最新文献
Cardiac evaluation of renal transplant candidates with heart failure. Clinical use of donor-derived cell-free DNA in kidney transplantation. Ethical frontiers in liver transplantation. Evolution of liver transplantation in the metabolic dysfunction-associated steatotic liver disease era: Tracking impact through time. Imaging-based prediction of hepatocellular carcinoma recurrence after microwave ablation as bridge therapy: A glimpse into the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1