circTMOD3在lps诱导的人肺成纤维细胞WI-38急性炎症和损伤中的作用

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2021-09-01 Epub Date: 2021-06-20 DOI:10.1080/01902148.2021.1940376
Ke Ma, Wei Wang, Chunyan Gao, Jine He
{"title":"circTMOD3在lps诱导的人肺成纤维细胞WI-38急性炎症和损伤中的作用","authors":"Ke Ma,&nbsp;Wei Wang,&nbsp;Chunyan Gao,&nbsp;Jine He","doi":"10.1080/01902148.2021.1940376","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Circular RNAs (circRNAs) have been implicated in the molecular etiology of pediatric pneumonia. Here, we investigated the precise action of circRNA tropomodulin 3 (circTMOD3, hsa_circ_0035292) in cell injury and inflammation induced by lipopolysaccharide (LPS). <b>Methods:</b> Cell viability was gauged by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin-6 (IL-6), IL-1β and tumor necrosis factor alpha (TNF-α) production. The levels of circTMOD3, microRNA (miR)-146b-3p, and C-X-C motif chemokine receptor 1 (CXCR1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R, Actinomycin D and subcellular localization assays were done to characterize circTMOD3. The direct relationship between miR-146b-3p and circTMOD3 or CXCR1 was confirmed by dual-luciferase reporter assays. <b>Results:</b> Our data showed that LPS induced the expression of circTMOD3 in WI-38 cells. CircTMOD3 was resistant to RNase R and was mainly present in the cytoplasm. Silencing endogenous circTMOD3 alleviated WI-38 cell injury and inflammation triggered by LPS. Mechanistically, circTMOD3 directly targeted miR-146b-3p, and CXCR1 was a direct and functional target of miR-146b-3p. CircTMOD3 regulated LPS-induced cell inflammation and injury by targeting miR-146b-3p, and miR-146b-3p-mediated suppression of CXCR1 impacted LPS-evoked cytotoxicity and inflammation. Furthermore, circTMOD3 functioned as a competing endogenous RNA (ceRNA) for miR-146b-3p to induce CXCR1 expression. <b>Conclusion:</b> Our findings demonstrated the regulation of circTMOD3 in LPS-induced cell injury and inflammation at least partially via miR-146b-3p-independent modulation of CXCR1.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"47 7","pages":"311-322"},"PeriodicalIF":1.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01902148.2021.1940376","citationCount":"7","resultStr":"{\"title\":\"The role of circTMOD3 in regulating LPS-induced acute inflammation and injury in human lung fibroblast WI-38 cells.\",\"authors\":\"Ke Ma,&nbsp;Wei Wang,&nbsp;Chunyan Gao,&nbsp;Jine He\",\"doi\":\"10.1080/01902148.2021.1940376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Circular RNAs (circRNAs) have been implicated in the molecular etiology of pediatric pneumonia. Here, we investigated the precise action of circRNA tropomodulin 3 (circTMOD3, hsa_circ_0035292) in cell injury and inflammation induced by lipopolysaccharide (LPS). <b>Methods:</b> Cell viability was gauged by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin-6 (IL-6), IL-1β and tumor necrosis factor alpha (TNF-α) production. The levels of circTMOD3, microRNA (miR)-146b-3p, and C-X-C motif chemokine receptor 1 (CXCR1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R, Actinomycin D and subcellular localization assays were done to characterize circTMOD3. The direct relationship between miR-146b-3p and circTMOD3 or CXCR1 was confirmed by dual-luciferase reporter assays. <b>Results:</b> Our data showed that LPS induced the expression of circTMOD3 in WI-38 cells. CircTMOD3 was resistant to RNase R and was mainly present in the cytoplasm. Silencing endogenous circTMOD3 alleviated WI-38 cell injury and inflammation triggered by LPS. Mechanistically, circTMOD3 directly targeted miR-146b-3p, and CXCR1 was a direct and functional target of miR-146b-3p. CircTMOD3 regulated LPS-induced cell inflammation and injury by targeting miR-146b-3p, and miR-146b-3p-mediated suppression of CXCR1 impacted LPS-evoked cytotoxicity and inflammation. Furthermore, circTMOD3 functioned as a competing endogenous RNA (ceRNA) for miR-146b-3p to induce CXCR1 expression. <b>Conclusion:</b> Our findings demonstrated the regulation of circTMOD3 in LPS-induced cell injury and inflammation at least partially via miR-146b-3p-independent modulation of CXCR1.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"47 7\",\"pages\":\"311-322\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01902148.2021.1940376\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2021.1940376\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2021.1940376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 7

摘要

背景:环状rna (circRNAs)与儿童肺炎的分子病因学有关。在这里,我们研究了circRNA原调节蛋白3 (circTMOD3, hsa_circ_0035292)在脂多糖(LPS)诱导的细胞损伤和炎症中的精确作用。方法:采用细胞计数试剂盒-8 (CCK-8)法测定细胞活力。流式细胞术检测细胞凋亡及周期分布。采用酶联免疫吸附法(ELISA)检测白细胞介素-6 (IL-6)、IL-1β和肿瘤坏死因子α (TNF-α)的产生。采用实时荧光定量聚合酶链反应(qRT-PCR)或western blot检测circTMOD3、microRNA (miR)-146b-3p和C-X-C基序趋化因子受体1 (CXCR1)水平。核糖核酸酶(RNase) R、放线菌素D和亚细胞定位分析对circTMOD3进行了表征。双荧光素酶报告基因检测证实了miR-146b-3p与circTMOD3或CXCR1之间的直接关系。结果:我们的数据显示,LPS诱导了WI-38细胞中circTMOD3的表达。CircTMOD3对RNase R具有抗性,主要存在于细胞质中。沉默内源性circTMOD3可减轻LPS引起的WI-38细胞损伤和炎症。在机制上,circTMOD3直接靶向miR-146b-3p,而CXCR1是miR-146b-3p的直接功能靶点。CircTMOD3通过靶向miR-146b-3p调节lps诱导的细胞炎症和损伤,miR-146b-3p介导的CXCR1抑制影响lps诱发的细胞毒性和炎症。此外,circTMOD3作为miR-146b-3p的竞争内源性RNA (ceRNA)诱导CXCR1表达。结论:我们的研究结果表明,circTMOD3在lps诱导的细胞损伤和炎症中至少部分通过mir -146b-3p-独立的CXCR1调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of circTMOD3 in regulating LPS-induced acute inflammation and injury in human lung fibroblast WI-38 cells.

Background: Circular RNAs (circRNAs) have been implicated in the molecular etiology of pediatric pneumonia. Here, we investigated the precise action of circRNA tropomodulin 3 (circTMOD3, hsa_circ_0035292) in cell injury and inflammation induced by lipopolysaccharide (LPS). Methods: Cell viability was gauged by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin-6 (IL-6), IL-1β and tumor necrosis factor alpha (TNF-α) production. The levels of circTMOD3, microRNA (miR)-146b-3p, and C-X-C motif chemokine receptor 1 (CXCR1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R, Actinomycin D and subcellular localization assays were done to characterize circTMOD3. The direct relationship between miR-146b-3p and circTMOD3 or CXCR1 was confirmed by dual-luciferase reporter assays. Results: Our data showed that LPS induced the expression of circTMOD3 in WI-38 cells. CircTMOD3 was resistant to RNase R and was mainly present in the cytoplasm. Silencing endogenous circTMOD3 alleviated WI-38 cell injury and inflammation triggered by LPS. Mechanistically, circTMOD3 directly targeted miR-146b-3p, and CXCR1 was a direct and functional target of miR-146b-3p. CircTMOD3 regulated LPS-induced cell inflammation and injury by targeting miR-146b-3p, and miR-146b-3p-mediated suppression of CXCR1 impacted LPS-evoked cytotoxicity and inflammation. Furthermore, circTMOD3 functioned as a competing endogenous RNA (ceRNA) for miR-146b-3p to induce CXCR1 expression. Conclusion: Our findings demonstrated the regulation of circTMOD3 in LPS-induced cell injury and inflammation at least partially via miR-146b-3p-independent modulation of CXCR1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Involvement of PRDX6 in the protective role of MANF in acute lung injury in rats. Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1