在伽玛辐照设施增加电子束辐照器,以提高服务能力。

Gilmara C de Luca, John Schlecht, Bart Croonenborghs
{"title":"在伽玛辐照设施增加电子束辐照器,以提高服务能力。","authors":"Gilmara C de Luca,&nbsp;John Schlecht,&nbsp;Bart Croonenborghs","doi":"10.2345/0899-8205-55.s3.27","DOIUrl":null,"url":null,"abstract":"<p><p>In 2013, Sterigenics undertook the addition of a 10-MeV electron beam (e-beam) accelerator at its facility in Jarinu, Brazil. A gamma irradiator was already located at this facility, which processed materials and provided irradiation services in Brazil. The decision to implement an e-beam accelerator at the same facility was made in order to diversify the technology that could be offered and to rapidly increase the overall capacity of the facility. In addition, the e-beam technology was complementary to the existing gamma pallet irradiator and thus provided an internal backup for some processes. The main challenge for staff at the Brazil facility was cross-validating processes carried out by the existing gamma irradiator with processes performed with the new e-beam accelerator. The overall success rate in the cross-validation of processes between the two modalities was positive. Products for healthcare, laboratory testing, and other low-bulk-density products that basically consisted of commonly used polymeric materials were most suitable for cross-validation. Products of higher bulk density, greater heterogeneity, or variability between packaging systems and products with dose specifications for a tote rather than a pallet gamma irradiator presented limitations in the cross-validation success rate. This article focuses on the transition approach, discusses the types of products that were successfully cross-validated in e-beam from gamma, and presents examples where such cross-validation was not pursued.</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655706/pdf/i0899-8205-55-s3-27.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing Service Capabilities by Adding Electron-Beam Irradiator to Gamma Irradiation Facility.\",\"authors\":\"Gilmara C de Luca,&nbsp;John Schlecht,&nbsp;Bart Croonenborghs\",\"doi\":\"10.2345/0899-8205-55.s3.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2013, Sterigenics undertook the addition of a 10-MeV electron beam (e-beam) accelerator at its facility in Jarinu, Brazil. A gamma irradiator was already located at this facility, which processed materials and provided irradiation services in Brazil. The decision to implement an e-beam accelerator at the same facility was made in order to diversify the technology that could be offered and to rapidly increase the overall capacity of the facility. In addition, the e-beam technology was complementary to the existing gamma pallet irradiator and thus provided an internal backup for some processes. The main challenge for staff at the Brazil facility was cross-validating processes carried out by the existing gamma irradiator with processes performed with the new e-beam accelerator. The overall success rate in the cross-validation of processes between the two modalities was positive. Products for healthcare, laboratory testing, and other low-bulk-density products that basically consisted of commonly used polymeric materials were most suitable for cross-validation. Products of higher bulk density, greater heterogeneity, or variability between packaging systems and products with dose specifications for a tote rather than a pallet gamma irradiator presented limitations in the cross-validation success rate. This article focuses on the transition approach, discusses the types of products that were successfully cross-validated in e-beam from gamma, and presents examples where such cross-validation was not pursued.</p>\",\"PeriodicalId\":35656,\"journal\":{\"name\":\"Biomedical Instrumentation and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655706/pdf/i0899-8205-55-s3-27.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Instrumentation and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2345/0899-8205-55.s3.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Instrumentation and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2345/0899-8205-55.s3.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

2013年,Sterigenics在其位于巴西Jarinu的设施中增加了一个10-MeV电子束加速器。该设施已经安置了一个伽马辐照器,在巴西加工材料并提供辐照服务。决定在同一设施实施电子束加速器是为了使可以提供的技术多样化,并迅速提高设施的整体能力。此外,电子束技术是现有伽玛托盘辐照器的补充,因此为某些工艺提供了内部备份。巴西工厂工作人员面临的主要挑战是将现有伽玛辐照器进行的过程与新的电子束加速器进行的过程进行交叉验证。在两种模式之间的过程交叉验证的总体成功率是积极的。用于医疗保健、实验室测试和其他基本上由常用聚合物材料组成的低体积密度产品最适合交叉验证。较高堆积密度的产品,更大的异质性,或包装系统之间的可变性,以及使用手提袋而不是托盘伽马辐照器剂量规格的产品,在交叉验证成功率方面存在限制。本文重点介绍了过渡方法,讨论了在伽玛电子束中成功交叉验证的产品类型,并提供了没有进行这种交叉验证的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Service Capabilities by Adding Electron-Beam Irradiator to Gamma Irradiation Facility.

In 2013, Sterigenics undertook the addition of a 10-MeV electron beam (e-beam) accelerator at its facility in Jarinu, Brazil. A gamma irradiator was already located at this facility, which processed materials and provided irradiation services in Brazil. The decision to implement an e-beam accelerator at the same facility was made in order to diversify the technology that could be offered and to rapidly increase the overall capacity of the facility. In addition, the e-beam technology was complementary to the existing gamma pallet irradiator and thus provided an internal backup for some processes. The main challenge for staff at the Brazil facility was cross-validating processes carried out by the existing gamma irradiator with processes performed with the new e-beam accelerator. The overall success rate in the cross-validation of processes between the two modalities was positive. Products for healthcare, laboratory testing, and other low-bulk-density products that basically consisted of commonly used polymeric materials were most suitable for cross-validation. Products of higher bulk density, greater heterogeneity, or variability between packaging systems and products with dose specifications for a tote rather than a pallet gamma irradiator presented limitations in the cross-validation success rate. This article focuses on the transition approach, discusses the types of products that were successfully cross-validated in e-beam from gamma, and presents examples where such cross-validation was not pursued.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Instrumentation and Technology
Biomedical Instrumentation and Technology Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
0.00%
发文量
16
期刊介绍: AAMI publishes Biomedical Instrumentation & Technology (BI&T) a bi-monthly peer-reviewed journal dedicated to the developers, managers, and users of medical instrumentation and technology.
期刊最新文献
Effect of Gamma and X-ray Irradiation on Polymers Commonly Used in Healthcare Products. Effect of Vaporized Hydrogen Peroxide and Nitrogen Dioxide Sterilization on Nitinol. Toward Enhanced Machine-Based Release in X-ray Sterilization. Beyond Endoscopes: Pilot Study of Surgical Instrument Lumen Inspection. Advantages and Limitations of Physical and Virtual Dose Mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1