{"title":"野生小鼠静息和最大代谢率的个体(Co)变化。","authors":"Alyssa Fiedler, Vincent Careau","doi":"10.1086/716042","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractBasal metabolic rate (BMR) represents the lowest level of aerobic metabolism in a resting, postabsorptive endotherm as measured within the thermoneutral zone. By contrast, maximal metabolic rate ([Formula: see text]max) reflects the upper limit of aerobic metabolism achieved during intensive exercise. As BMR and [Formula: see text]max define the boundaries of the possible levels of aerobic metabolism expressed by a normothermic individual, a key question is whether BMR and [Formula: see text]max are correlated. In the present study, we took repeated paired measurements of thermoneutral resting metabolic rate (RMR<sub>t</sub>) and [Formula: see text]max on 165 white-footed mice (<i>Peromyscus leucopus</i>). Over a single summer (May-October), repeatability (<i>R</i> ± SE) was low but statistically significant ([Formula: see text]) for both RMR<sub>t</sub> and [Formula: see text]max ([Formula: see text] for RMR<sub>t</sub>; [Formula: see text] for [Formula: see text]max). Willingness to run during the forced-exercise trials was also significantly repeatable ([Formula: see text]). At the residual level (within individual), RMR<sub>t</sub> and [Formula: see text]max tended to be positively correlated ([Formula: see text], [Formula: see text]), suggesting the presence of correlated phenotypic plasticity. By contrast, RMR<sub>t</sub> and [Formula: see text]max were significantly negatively correlated at the among-individual level ([Formula: see text]). To the extent that variation in RMR<sub>t</sub> reflects variation in BMR, the negative among-individual correlation does not corroborate the idea that a costly metabolic machinery is needed to support a high [Formula: see text]max. Future research should investigate the (genetic) relationship between RMR<sub>t</sub> (and BMR) and other energetically expensive behaviors and activities to better understand how energy is allocated within individuals.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"94 5","pages":"338-352"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/716042","citationCount":"4","resultStr":"{\"title\":\"Individual (Co)variation in Resting and Maximal Metabolic Rates in Wild Mice.\",\"authors\":\"Alyssa Fiedler, Vincent Careau\",\"doi\":\"10.1086/716042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractBasal metabolic rate (BMR) represents the lowest level of aerobic metabolism in a resting, postabsorptive endotherm as measured within the thermoneutral zone. By contrast, maximal metabolic rate ([Formula: see text]max) reflects the upper limit of aerobic metabolism achieved during intensive exercise. As BMR and [Formula: see text]max define the boundaries of the possible levels of aerobic metabolism expressed by a normothermic individual, a key question is whether BMR and [Formula: see text]max are correlated. In the present study, we took repeated paired measurements of thermoneutral resting metabolic rate (RMR<sub>t</sub>) and [Formula: see text]max on 165 white-footed mice (<i>Peromyscus leucopus</i>). Over a single summer (May-October), repeatability (<i>R</i> ± SE) was low but statistically significant ([Formula: see text]) for both RMR<sub>t</sub> and [Formula: see text]max ([Formula: see text] for RMR<sub>t</sub>; [Formula: see text] for [Formula: see text]max). Willingness to run during the forced-exercise trials was also significantly repeatable ([Formula: see text]). At the residual level (within individual), RMR<sub>t</sub> and [Formula: see text]max tended to be positively correlated ([Formula: see text], [Formula: see text]), suggesting the presence of correlated phenotypic plasticity. By contrast, RMR<sub>t</sub> and [Formula: see text]max were significantly negatively correlated at the among-individual level ([Formula: see text]). To the extent that variation in RMR<sub>t</sub> reflects variation in BMR, the negative among-individual correlation does not corroborate the idea that a costly metabolic machinery is needed to support a high [Formula: see text]max. Future research should investigate the (genetic) relationship between RMR<sub>t</sub> (and BMR) and other energetically expensive behaviors and activities to better understand how energy is allocated within individuals.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"94 5\",\"pages\":\"338-352\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/716042\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/716042\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/716042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Individual (Co)variation in Resting and Maximal Metabolic Rates in Wild Mice.
AbstractBasal metabolic rate (BMR) represents the lowest level of aerobic metabolism in a resting, postabsorptive endotherm as measured within the thermoneutral zone. By contrast, maximal metabolic rate ([Formula: see text]max) reflects the upper limit of aerobic metabolism achieved during intensive exercise. As BMR and [Formula: see text]max define the boundaries of the possible levels of aerobic metabolism expressed by a normothermic individual, a key question is whether BMR and [Formula: see text]max are correlated. In the present study, we took repeated paired measurements of thermoneutral resting metabolic rate (RMRt) and [Formula: see text]max on 165 white-footed mice (Peromyscus leucopus). Over a single summer (May-October), repeatability (R ± SE) was low but statistically significant ([Formula: see text]) for both RMRt and [Formula: see text]max ([Formula: see text] for RMRt; [Formula: see text] for [Formula: see text]max). Willingness to run during the forced-exercise trials was also significantly repeatable ([Formula: see text]). At the residual level (within individual), RMRt and [Formula: see text]max tended to be positively correlated ([Formula: see text], [Formula: see text]), suggesting the presence of correlated phenotypic plasticity. By contrast, RMRt and [Formula: see text]max were significantly negatively correlated at the among-individual level ([Formula: see text]). To the extent that variation in RMRt reflects variation in BMR, the negative among-individual correlation does not corroborate the idea that a costly metabolic machinery is needed to support a high [Formula: see text]max. Future research should investigate the (genetic) relationship between RMRt (and BMR) and other energetically expensive behaviors and activities to better understand how energy is allocated within individuals.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.