产生具有高骨骼多样性的1000亿个环状肽噬菌体展示文库。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI:10.1093/protein/gzab018
Vanessa Carle, Xu-Dong Kong, Alice Comberlato, Chelsea Edwards, Cristina Díaz-Perlas, Christian Heinis
{"title":"产生具有高骨骼多样性的1000亿个环状肽噬菌体展示文库。","authors":"Vanessa Carle,&nbsp;Xu-Dong Kong,&nbsp;Alice Comberlato,&nbsp;Chelsea Edwards,&nbsp;Cristina Díaz-Perlas,&nbsp;Christian Heinis","doi":"10.1093/protein/gzab018","DOIUrl":null,"url":null,"abstract":"<p><p>Phage display is a powerful technique routinely used for the generation of peptide- or protein-based ligands. The success of phage display selections critically depends on the size and structural diversity of the libraries, but the generation of large libraries remains challenging. In this work, we have succeeded in developing a phage display library comprising around 100 billion different (bi)cyclic peptides and thus more structures than any previously reported cyclic peptide phage display library. Building such a high diversity was achieved by combining a recently reported library cloning technique, based on whole plasmid PCR, with a small plasmid that facilitated bacterial transformation. The library cloned is based on 273 different peptide backbones and thus has a large skeletal diversity. Panning of the peptide repertoire against the important thrombosis target coagulation factor XI enriched high-affinity peptides with long consensus sequences that can only be found if the library diversity is large.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity.\",\"authors\":\"Vanessa Carle,&nbsp;Xu-Dong Kong,&nbsp;Alice Comberlato,&nbsp;Chelsea Edwards,&nbsp;Cristina Díaz-Perlas,&nbsp;Christian Heinis\",\"doi\":\"10.1093/protein/gzab018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phage display is a powerful technique routinely used for the generation of peptide- or protein-based ligands. The success of phage display selections critically depends on the size and structural diversity of the libraries, but the generation of large libraries remains challenging. In this work, we have succeeded in developing a phage display library comprising around 100 billion different (bi)cyclic peptides and thus more structures than any previously reported cyclic peptide phage display library. Building such a high diversity was achieved by combining a recently reported library cloning technique, based on whole plasmid PCR, with a small plasmid that facilitated bacterial transformation. The library cloned is based on 273 different peptide backbones and thus has a large skeletal diversity. Panning of the peptide repertoire against the important thrombosis target coagulation factor XI enriched high-affinity peptides with long consensus sequences that can only be found if the library diversity is large.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzab018\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

噬菌体展示是一种强大的技术,通常用于生成基于肽或蛋白质的配体。噬菌体展示选择的成功关键取决于文库的大小和结构多样性,但大型文库的产生仍然具有挑战性。在这项工作中,我们已经成功地开发了一个噬菌体展示文库,包括大约1000亿个不同的(双)环肽,因此比任何先前报道的环肽噬菌体展示文库的结构更多。建立如此高的多样性是通过结合最近报道的基于全质粒PCR的文库克隆技术和促进细菌转化的小质粒来实现的。克隆的文库基于273种不同的肽骨架,因此具有很大的骨架多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity.

Phage display is a powerful technique routinely used for the generation of peptide- or protein-based ligands. The success of phage display selections critically depends on the size and structural diversity of the libraries, but the generation of large libraries remains challenging. In this work, we have succeeded in developing a phage display library comprising around 100 billion different (bi)cyclic peptides and thus more structures than any previously reported cyclic peptide phage display library. Building such a high diversity was achieved by combining a recently reported library cloning technique, based on whole plasmid PCR, with a small plasmid that facilitated bacterial transformation. The library cloned is based on 273 different peptide backbones and thus has a large skeletal diversity. Panning of the peptide repertoire against the important thrombosis target coagulation factor XI enriched high-affinity peptides with long consensus sequences that can only be found if the library diversity is large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Design of functional intrinsically disordered proteins. The shortest path method (SPM) webserver for computational enzyme design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1