Nathan C Hurley, Erica S Spatz, Harlan M Krumholz, Roozbeh Jafari, Bobak J Mortazavi
{"title":"心血管疾病风险因素传感与分析的挑战与机遇调查》。","authors":"Nathan C Hurley, Erica S Spatz, Harlan M Krumholz, Roozbeh Jafari, Bobak J Mortazavi","doi":"10.1145/3417958","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disorders cause nearly one in three deaths in the United States. Short- and long-term care for these disorders is often determined in short-term settings. However, these decisions are made with minimal longitudinal and long-term data. To overcome this bias towards data from acute care settings, improved longitudinal monitoring for cardiovascular patients is needed. Longitudinal monitoring provides a more comprehensive picture of patient health, allowing for informed decision making. This work surveys sensing and machine learning in the field of remote health monitoring for cardiovascular disorders. We highlight three needs in the design of new smart health technologies: (1) need for sensing technologies that track longitudinal trends of the cardiovascular disorder despite infrequent, noisy, or missing data measurements; (2) need for new analytic techniques designed in a longitudinal, continual fashion to aid in the development of new risk prediction techniques and in tracking disease progression; and (3) need for personalized and interpretable machine learning techniques, allowing for advancements in clinical decision making. We highlight these needs based upon the current state of the art in smart health technologies and analytics. We then discuss opportunities in addressing these needs for development of smart health technologies for the field of cardiovascular disorders and care.</p>","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320445/pdf/nihms-1670305.pdf","citationCount":"0","resultStr":"{\"title\":\"A Survey of Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders.\",\"authors\":\"Nathan C Hurley, Erica S Spatz, Harlan M Krumholz, Roozbeh Jafari, Bobak J Mortazavi\",\"doi\":\"10.1145/3417958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disorders cause nearly one in three deaths in the United States. Short- and long-term care for these disorders is often determined in short-term settings. However, these decisions are made with minimal longitudinal and long-term data. To overcome this bias towards data from acute care settings, improved longitudinal monitoring for cardiovascular patients is needed. Longitudinal monitoring provides a more comprehensive picture of patient health, allowing for informed decision making. This work surveys sensing and machine learning in the field of remote health monitoring for cardiovascular disorders. We highlight three needs in the design of new smart health technologies: (1) need for sensing technologies that track longitudinal trends of the cardiovascular disorder despite infrequent, noisy, or missing data measurements; (2) need for new analytic techniques designed in a longitudinal, continual fashion to aid in the development of new risk prediction techniques and in tracking disease progression; and (3) need for personalized and interpretable machine learning techniques, allowing for advancements in clinical decision making. We highlight these needs based upon the current state of the art in smart health technologies and analytics. We then discuss opportunities in addressing these needs for development of smart health technologies for the field of cardiovascular disorders and care.</p>\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320445/pdf/nihms-1670305.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3417958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3417958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A Survey of Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders.
Cardiovascular disorders cause nearly one in three deaths in the United States. Short- and long-term care for these disorders is often determined in short-term settings. However, these decisions are made with minimal longitudinal and long-term data. To overcome this bias towards data from acute care settings, improved longitudinal monitoring for cardiovascular patients is needed. Longitudinal monitoring provides a more comprehensive picture of patient health, allowing for informed decision making. This work surveys sensing and machine learning in the field of remote health monitoring for cardiovascular disorders. We highlight three needs in the design of new smart health technologies: (1) need for sensing technologies that track longitudinal trends of the cardiovascular disorder despite infrequent, noisy, or missing data measurements; (2) need for new analytic techniques designed in a longitudinal, continual fashion to aid in the development of new risk prediction techniques and in tracking disease progression; and (3) need for personalized and interpretable machine learning techniques, allowing for advancements in clinical decision making. We highlight these needs based upon the current state of the art in smart health technologies and analytics. We then discuss opportunities in addressing these needs for development of smart health technologies for the field of cardiovascular disorders and care.