{"title":"一种贝叶斯启发理论,用于优化建立高效的粗粒度折叠力场。","authors":"Travis Hurst, Dong Zhang, Yuanzhe Zhou, Shi-Jie Chen","doi":"10.4310/cis.2021.v21.n1.a4","DOIUrl":null,"url":null,"abstract":"<p><p>Because of their potential utility in predicting conformational changes and assessing folding dynamics, coarse-grained (CG) RNA folding models are appealing for rapid characterization of RNA molecules. Previously, we reported the iterative simulated RNA reference state (IsRNA) method for parameterizing a CG force field for RNA folding, which consecutively updates the simulation force field to reflect marginal distributions of folding coordinates in the structure database and extract various energy terms. While the IsRNA model was validated by showing close agreement between the IsRNA-simulated and experimentally observed distributions, here, we expand our theoretical understanding of the model and, in doing so, improve the parameterization process to optimize the subset of included folding coordinates, which leads to accelerated simulations. Using statistical mechanical theory, we analyze the underlying, Bayesian concept that drives parameterization of the energy function, providing a general method for developing predictive, knowledge-based, polymer force fields on the basis of limited data. Furthermore, we propose an optimal parameterization procedure, based on the principal of maximum entropy.</p>","PeriodicalId":45018,"journal":{"name":"Communications in Information and Systems","volume":"21 1","pages":"65-83"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336718/pdf/nihms-1690260.pdf","citationCount":"0","resultStr":"{\"title\":\"A Bayes-inspired theory for optimally building an efficient coarse-grained folding force field.\",\"authors\":\"Travis Hurst, Dong Zhang, Yuanzhe Zhou, Shi-Jie Chen\",\"doi\":\"10.4310/cis.2021.v21.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because of their potential utility in predicting conformational changes and assessing folding dynamics, coarse-grained (CG) RNA folding models are appealing for rapid characterization of RNA molecules. Previously, we reported the iterative simulated RNA reference state (IsRNA) method for parameterizing a CG force field for RNA folding, which consecutively updates the simulation force field to reflect marginal distributions of folding coordinates in the structure database and extract various energy terms. While the IsRNA model was validated by showing close agreement between the IsRNA-simulated and experimentally observed distributions, here, we expand our theoretical understanding of the model and, in doing so, improve the parameterization process to optimize the subset of included folding coordinates, which leads to accelerated simulations. Using statistical mechanical theory, we analyze the underlying, Bayesian concept that drives parameterization of the energy function, providing a general method for developing predictive, knowledge-based, polymer force fields on the basis of limited data. Furthermore, we propose an optimal parameterization procedure, based on the principal of maximum entropy.</p>\",\"PeriodicalId\":45018,\"journal\":{\"name\":\"Communications in Information and Systems\",\"volume\":\"21 1\",\"pages\":\"65-83\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336718/pdf/nihms-1690260.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cis.2021.v21.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cis.2021.v21.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Bayes-inspired theory for optimally building an efficient coarse-grained folding force field.
Because of their potential utility in predicting conformational changes and assessing folding dynamics, coarse-grained (CG) RNA folding models are appealing for rapid characterization of RNA molecules. Previously, we reported the iterative simulated RNA reference state (IsRNA) method for parameterizing a CG force field for RNA folding, which consecutively updates the simulation force field to reflect marginal distributions of folding coordinates in the structure database and extract various energy terms. While the IsRNA model was validated by showing close agreement between the IsRNA-simulated and experimentally observed distributions, here, we expand our theoretical understanding of the model and, in doing so, improve the parameterization process to optimize the subset of included folding coordinates, which leads to accelerated simulations. Using statistical mechanical theory, we analyze the underlying, Bayesian concept that drives parameterization of the energy function, providing a general method for developing predictive, knowledge-based, polymer force fields on the basis of limited data. Furthermore, we propose an optimal parameterization procedure, based on the principal of maximum entropy.