Weronika Erdmann, Hanna Kmita, Jakub Z Kosicki, Łukasz Kaczmarek
{"title":"地磁场如何影响地球上的生命——地磁生物学的综合方法。","authors":"Weronika Erdmann, Hanna Kmita, Jakub Z Kosicki, Łukasz Kaczmarek","doi":"10.1007/s11084-021-09612-5","DOIUrl":null,"url":null,"abstract":"<p><p>Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"51 3","pages":"231-257"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology.\",\"authors\":\"Weronika Erdmann, Hanna Kmita, Jakub Z Kosicki, Łukasz Kaczmarek\",\"doi\":\"10.1007/s11084-021-09612-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":\"51 3\",\"pages\":\"231-257\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-021-09612-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-021-09612-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology.
Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.
期刊介绍:
The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.