{"title":"用密度泛函理论(DFT)研究D-A聚合物单体光电和光伏性能。","authors":"Numbury Surendra Babu, Said A H Vuai","doi":"10.1080/15685551.2021.1956209","DOIUrl":null,"url":null,"abstract":"<p><p>In this research article, the new donor-acceptor (D-A) monomers developed using 4-methoxy-9-methyl-9 H-carbazole (MMCB) as electron donors and various electron acceptors. DFT and TD-DFT methods at the level of B3LYP with a 6-311 G basis set in a gas and chloroform solvent were used to calculate electronic and optoelectronic properties. To dissect the relationship between the molecular and optoelectronic structures, the impacts of specific acceptors on the geometry of molecules and optoelectronic properties of these D-A monomers were discussed. The calculations are also carried out on HOMO-LUMO, atomic orbital densities. The calculated band gap <i>E</i> <sub><i>g</i></sub> of the monomers considered increases 3,6-MMCB-OCP ≈ 3,6-MMCB-BCO < 3,6-MMCB-SDP < 3,6-MMCB-SCP < 3,6-MMCB-TCP < 3,6-MMCB-TDP < 3,6-MMCB-BCS < 3,6-MMCB-BCT in both in the gas and solvent phases. Subsequently, the optoelectrical properties of <i>E</i> <sub><i>HOMO</i></sub> , <i>E</i> <sub><i>LUMO</i></sub> , <i>E</i> <sub><i>opt</i></sub> , and <i>E</i> <sub><i>B</i></sub> energies were critically updated. Compared to different monomers, the far lower <i>E</i> <sub>g</sub> of the 3,6-MMCB-OCP and 3,6-CB-BCO has shown optoelectronic applications in organic solar cells like BHJ.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"24 1","pages":"224-237"},"PeriodicalIF":1.8000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15685551.2021.1956209","citationCount":"2","resultStr":"{\"title\":\"Theoretical studies of optoelectronic and photovoltaic properties of D-A polymer monomers by Density Functional Theory (DFT).\",\"authors\":\"Numbury Surendra Babu, Said A H Vuai\",\"doi\":\"10.1080/15685551.2021.1956209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this research article, the new donor-acceptor (D-A) monomers developed using 4-methoxy-9-methyl-9 H-carbazole (MMCB) as electron donors and various electron acceptors. DFT and TD-DFT methods at the level of B3LYP with a 6-311 G basis set in a gas and chloroform solvent were used to calculate electronic and optoelectronic properties. To dissect the relationship between the molecular and optoelectronic structures, the impacts of specific acceptors on the geometry of molecules and optoelectronic properties of these D-A monomers were discussed. The calculations are also carried out on HOMO-LUMO, atomic orbital densities. The calculated band gap <i>E</i> <sub><i>g</i></sub> of the monomers considered increases 3,6-MMCB-OCP ≈ 3,6-MMCB-BCO < 3,6-MMCB-SDP < 3,6-MMCB-SCP < 3,6-MMCB-TCP < 3,6-MMCB-TDP < 3,6-MMCB-BCS < 3,6-MMCB-BCT in both in the gas and solvent phases. Subsequently, the optoelectrical properties of <i>E</i> <sub><i>HOMO</i></sub> , <i>E</i> <sub><i>LUMO</i></sub> , <i>E</i> <sub><i>opt</i></sub> , and <i>E</i> <sub><i>B</i></sub> energies were critically updated. Compared to different monomers, the far lower <i>E</i> <sub>g</sub> of the 3,6-MMCB-OCP and 3,6-CB-BCO has shown optoelectronic applications in organic solar cells like BHJ.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"24 1\",\"pages\":\"224-237\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15685551.2021.1956209\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2021.1956209\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2021.1956209","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Theoretical studies of optoelectronic and photovoltaic properties of D-A polymer monomers by Density Functional Theory (DFT).
In this research article, the new donor-acceptor (D-A) monomers developed using 4-methoxy-9-methyl-9 H-carbazole (MMCB) as electron donors and various electron acceptors. DFT and TD-DFT methods at the level of B3LYP with a 6-311 G basis set in a gas and chloroform solvent were used to calculate electronic and optoelectronic properties. To dissect the relationship between the molecular and optoelectronic structures, the impacts of specific acceptors on the geometry of molecules and optoelectronic properties of these D-A monomers were discussed. The calculations are also carried out on HOMO-LUMO, atomic orbital densities. The calculated band gap Eg of the monomers considered increases 3,6-MMCB-OCP ≈ 3,6-MMCB-BCO < 3,6-MMCB-SDP < 3,6-MMCB-SCP < 3,6-MMCB-TCP < 3,6-MMCB-TDP < 3,6-MMCB-BCS < 3,6-MMCB-BCT in both in the gas and solvent phases. Subsequently, the optoelectrical properties of EHOMO , ELUMO , Eopt , and EB energies were critically updated. Compared to different monomers, the far lower Eg of the 3,6-MMCB-OCP and 3,6-CB-BCO has shown optoelectronic applications in organic solar cells like BHJ.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications