SIRT1:有望成为 2 型糖尿病的治疗靶点。

IF 2.5 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Archives of Physiology and Biochemistry Pub Date : 2024-02-01 Epub Date: 2021-08-11 DOI:10.1080/13813455.2021.1956976
Ainaz Mihanfar, Maryam Akbarzadeh, Saber Ghazizadeh Darband, Shirin Sadighparvar, Maryam Majidinia
{"title":"SIRT1:有望成为 2 型糖尿病的治疗靶点。","authors":"Ainaz Mihanfar, Maryam Akbarzadeh, Saber Ghazizadeh Darband, Shirin Sadighparvar, Maryam Majidinia","doi":"10.1080/13813455.2021.1956976","DOIUrl":null,"url":null,"abstract":"<p><p>A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT1: a promising therapeutic target in type 2 diabetes mellitus.\",\"authors\":\"Ainaz Mihanfar, Maryam Akbarzadeh, Saber Ghazizadeh Darband, Shirin Sadighparvar, Maryam Majidinia\",\"doi\":\"10.1080/13813455.2021.1956976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2021.1956976\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2021.1956976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

2 型糖尿病(T2DM)在全球的发病率和流行率大幅上升,因此需要研究新型有效的治疗策略。Sirtuin 1(SIRT1)是一种依赖于 NAD + 的蛋白去乙酰化酶,在调节葡萄糖/脂质代谢、胰岛素抵抗、炎症、氧化应激和线粒体功能方面具有重要功能。SIRT1 还参与调节胰岛β细胞的胰岛素分泌,保护这些细胞免受炎症和氧化应激介导的组织损伤。在这方面,主要的 SIRT1 激活剂已被证明对逆转 T2DM 相关并发症(包括心肌病、肾病、视网膜病变和神经病变)产生有益影响,从而治疗 T2DM。因此,最近有越来越多的研究探讨了靶向 SIRT1 作为 T2DM 治疗策略的疗效。在这篇综述中,我们旨在讨论目前对 SIRT1 生理和生物学作用的理解,其在 T2DM 发病机制中的作用,以及 SIRT1 在防治 T2DM 中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIRT1: a promising therapeutic target in type 2 diabetes mellitus.

A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Physiology and Biochemistry
Archives of Physiology and Biochemistry ENDOCRINOLOGY & METABOLISM-PHYSIOLOGY
CiteScore
6.90
自引率
3.30%
发文量
21
期刊介绍: Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders. The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications. Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics: -Dysregulation of hormone receptors and signal transduction -Contribution of gene variants and gene regulatory processes -Impairment of intermediary metabolism at the cellular level -Secretion and metabolism of peptides and other factors that mediate cellular crosstalk -Therapeutic strategies for managing metabolic diseases Special issues dedicated to topics in the field will be published regularly.
期刊最新文献
Beclin1/LC3II/P62 autophagy pathway activation is involved in the protective action of C-peptide against prostate injury in a rat model of type 1 diabetes. Combination therapy of systemic and local metformin improves imiquimod-induced psoriasis-like lesions with type 2 diabetes: the role of AMPK/KGF/STAT3 axis. Correction. The effect of Helicobacter pylori-derived extracellular vesicles on glucose metabolism and induction of insulin resistance in HepG2 cells. Glucose metabolism in the perfused liver did not improve with resistance training in male Swiss mice under caloric restriction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1