形状数据分析:从地标到弹性曲线

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-05-01 Epub Date: 2020-01-17 DOI:10.1002/wics.1495
Karthik Bharath, Sebastian Kurtek
{"title":"形状数据分析:从地标到弹性曲线","authors":"Karthik Bharath, Sebastian Kurtek","doi":"10.1002/wics.1495","DOIUrl":null,"url":null,"abstract":"<p><p>Proliferation of high-resolution imaging data in recent years has led to sub-stantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two-dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark-based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape-preserving transformation of a curve. The transition to the curve-based approach moves the mathematical setting of shape analysis from finite-dimensional non-Euclidean spaces to infinite-dimensional ones. We discuss some of the challenges associated with the infinite-dimensionality of the shape space, and illustrate the use of geometry-based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state-of-the-art in the field.</p>","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357314/pdf/nihms-1704274.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of shape data: From landmarks to elastic curves.\",\"authors\":\"Karthik Bharath, Sebastian Kurtek\",\"doi\":\"10.1002/wics.1495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proliferation of high-resolution imaging data in recent years has led to sub-stantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two-dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark-based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape-preserving transformation of a curve. The transition to the curve-based approach moves the mathematical setting of shape analysis from finite-dimensional non-Euclidean spaces to infinite-dimensional ones. We discuss some of the challenges associated with the infinite-dimensionality of the shape space, and illustrate the use of geometry-based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state-of-the-art in the field.</p>\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357314/pdf/nihms-1704274.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1495\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1495","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,高分辨率成像数据的激增使得基于地标和/或连续曲线分析数据对象形状的两种流行方法有了质的飞跃。我们对代表二维(2D)物体形状的参数平面曲线的弹性形状分析进行了阐述,讨论了它与基于地标的方法的区别和共同点。除了旋转、缩放和平移之外,曲线的重参数化也是曲线形状保持的重要变换。向基于曲线的方法过渡,使形状分析的数学环境从有限维非欧几里得空间转向无限维空间。我们讨论了与形状空间的无穷维性相关的一些挑战,并举例说明了在计算内在统计摘要和定义由小鼠椎骨组成的二维成像数据集的统计模型时如何使用基于几何的方法。最后,我们将概述该领域的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of shape data: From landmarks to elastic curves.

Proliferation of high-resolution imaging data in recent years has led to sub-stantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two-dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark-based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape-preserving transformation of a curve. The transition to the curve-based approach moves the mathematical setting of shape analysis from finite-dimensional non-Euclidean spaces to infinite-dimensional ones. We discuss some of the challenges associated with the infinite-dimensionality of the shape space, and illustrate the use of geometry-based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state-of-the-art in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1