Nicole A Forner-Phillips, Jessica E Brown, Briana M Silck, Robert S Ross
{"title":"振荡功率的降低与对高价值信息的更好记忆有关。","authors":"Nicole A Forner-Phillips, Jessica E Brown, Briana M Silck, Robert S Ross","doi":"10.1080/17588928.2021.1963694","DOIUrl":null,"url":null,"abstract":"<p><p>Items associated with high value are often better remembered. Value may increase attention toward item in context associations. Alpha oscillations (8-13 Hz) are thought to underlie attention and their observation may reveal the role attention plays in value-based memory. In the current study, EEG is used to record brain activity while participants (n = 30) completed a source recognition memory task where items were associated with either high or low value backgrounds to determine whether greater attentional resources are deployed when encoding high value information. Participants demonstrated better memory for objects associated with high value backgrounds. Alpha oscillatory power in occipital/temporal brain regions exhibited greater desynchronization when encoding objects associated with high value that were later successfully recalled compared to those associated with low value. In addition, beta oscillatory power in midfrontal brain regions exhibited greater desynchronization during successful recall of high value objects compared to low value objects. Together these results suggest that more attentional resources are used to encode information that is associated with high value, which increases the likelihood of later successful memory recall.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":"13 2","pages":"87-98"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpha oscillatory power decreases are associated with better memory for higher valued information.\",\"authors\":\"Nicole A Forner-Phillips, Jessica E Brown, Briana M Silck, Robert S Ross\",\"doi\":\"10.1080/17588928.2021.1963694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Items associated with high value are often better remembered. Value may increase attention toward item in context associations. Alpha oscillations (8-13 Hz) are thought to underlie attention and their observation may reveal the role attention plays in value-based memory. In the current study, EEG is used to record brain activity while participants (n = 30) completed a source recognition memory task where items were associated with either high or low value backgrounds to determine whether greater attentional resources are deployed when encoding high value information. Participants demonstrated better memory for objects associated with high value backgrounds. Alpha oscillatory power in occipital/temporal brain regions exhibited greater desynchronization when encoding objects associated with high value that were later successfully recalled compared to those associated with low value. In addition, beta oscillatory power in midfrontal brain regions exhibited greater desynchronization during successful recall of high value objects compared to low value objects. Together these results suggest that more attentional resources are used to encode information that is associated with high value, which increases the likelihood of later successful memory recall.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\"13 2\",\"pages\":\"87-98\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2021.1963694\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2021.1963694","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Alpha oscillatory power decreases are associated with better memory for higher valued information.
Items associated with high value are often better remembered. Value may increase attention toward item in context associations. Alpha oscillations (8-13 Hz) are thought to underlie attention and their observation may reveal the role attention plays in value-based memory. In the current study, EEG is used to record brain activity while participants (n = 30) completed a source recognition memory task where items were associated with either high or low value backgrounds to determine whether greater attentional resources are deployed when encoding high value information. Participants demonstrated better memory for objects associated with high value backgrounds. Alpha oscillatory power in occipital/temporal brain regions exhibited greater desynchronization when encoding objects associated with high value that were later successfully recalled compared to those associated with low value. In addition, beta oscillatory power in midfrontal brain regions exhibited greater desynchronization during successful recall of high value objects compared to low value objects. Together these results suggest that more attentional resources are used to encode information that is associated with high value, which increases the likelihood of later successful memory recall.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.