{"title":"利用深度强化学习的结构突破感知对交易策略。","authors":"Jing-You Lu, Hsu-Chao Lai, Wen-Yueh Shih, Yi-Feng Chen, Shen-Hang Huang, Hao-Han Chang, Jun-Zhe Wang, Jiun-Long Huang, Tian-Shyr Dai","doi":"10.1007/s11227-021-04013-x","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pairs trading</i> is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely <i>structural break-aware pairs trading strategy</i> (<i>SAPT</i>), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"78 3","pages":"3843-3882"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural break-aware pairs trading strategy using deep reinforcement learning.\",\"authors\":\"Jing-You Lu, Hsu-Chao Lai, Wen-Yueh Shih, Yi-Feng Chen, Shen-Hang Huang, Hao-Han Chang, Jun-Zhe Wang, Jiun-Long Huang, Tian-Shyr Dai\",\"doi\":\"10.1007/s11227-021-04013-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Pairs trading</i> is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely <i>structural break-aware pairs trading strategy</i> (<i>SAPT</i>), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"78 3\",\"pages\":\"3843-3882\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-021-04013-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-04013-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Structural break-aware pairs trading strategy using deep reinforcement learning.
Pairs trading is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely structural break-aware pairs trading strategy (SAPT), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.