利用深度强化学习的结构突破感知对交易策略。

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Supercomputing Pub Date : 2022-01-01 Epub Date: 2021-08-17 DOI:10.1007/s11227-021-04013-x
Jing-You Lu, Hsu-Chao Lai, Wen-Yueh Shih, Yi-Feng Chen, Shen-Hang Huang, Hao-Han Chang, Jun-Zhe Wang, Jiun-Long Huang, Tian-Shyr Dai
{"title":"利用深度强化学习的结构突破感知对交易策略。","authors":"Jing-You Lu, Hsu-Chao Lai, Wen-Yueh Shih, Yi-Feng Chen, Shen-Hang Huang, Hao-Han Chang, Jun-Zhe Wang, Jiun-Long Huang, Tian-Shyr Dai","doi":"10.1007/s11227-021-04013-x","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pairs trading</i> is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely <i>structural break-aware pairs trading strategy</i> (<i>SAPT</i>), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"78 3","pages":"3843-3882"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural break-aware pairs trading strategy using deep reinforcement learning.\",\"authors\":\"Jing-You Lu, Hsu-Chao Lai, Wen-Yueh Shih, Yi-Feng Chen, Shen-Hang Huang, Hao-Han Chang, Jun-Zhe Wang, Jiun-Long Huang, Tian-Shyr Dai\",\"doi\":\"10.1007/s11227-021-04013-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Pairs trading</i> is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely <i>structural break-aware pairs trading strategy</i> (<i>SAPT</i>), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"78 3\",\"pages\":\"3843-3882\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-021-04013-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-04013-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

考虑到配对股票的价差具有稳定的协整关系,配对交易是一种有效的统计套利策略。然而,市场的快速变化可能会打破这种关系(即结构性断裂),从而进一步导致日内交易的巨大损失。在本文中,我们利用机器学习技术设计了一个两阶段的配对交易策略优化框架,即结构性断裂感知配对交易策略(SAPT)。第一阶段是一个混合模型,提取频域和时域特征来检测结构断裂。第二阶段利用新颖的强化学习模型,通过感知重要风险(包括结构性中断和市场关闭风险)来优化配对交易策略。此外,还将交易成本纳入成本感知目标,以避免盈利能力大幅下降。通过在真实的台湾股市数据集上进行大规模实验,SAPT 在利润和 Sortino 比率方面分别比最先进的策略高出至少 456% 和 934%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural break-aware pairs trading strategy using deep reinforcement learning.

Pairs trading is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely structural break-aware pairs trading strategy (SAPT), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
期刊最新文献
Topic sentiment analysis based on deep neural network using document embedding technique. A Fechner multiscale local descriptor for face recognition. Data quality model for assessing public COVID-19 big datasets. BTDA: Two-factor dynamic identity authentication scheme for data trading based on alliance chain. Driving behavior analysis and classification by vehicle OBD data using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1