Patrick J Krug, Elizabeth Shimer, Valerie A Rodriguez
{"title":"河口腹足类动物动态范围边界对温度和盐度胁迫的差异耐受和季节适应。","authors":"Patrick J Krug, Elizabeth Shimer, Valerie A Rodriguez","doi":"10.1086/715845","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractInsight into how coastal organisms will respond to changing temperature and salinity regimes may be derived from studies of adaptation to fluctuating estuarine environments, especially under stressful range-edge conditions. We characterized a dynamic range boundary between two estuarine sea slugs, <i>Alderia modesta</i> (distributed across the North Pacific and North Atlantic) and <i>Alderia willowi</i>, known from southern and central California. The species overlap from Bodega Bay to San Francisco Bay, where populations are dominated by <i>A. modesta</i> after winter rains but by <i>A. willowi</i> after peak summer temperatures. Laboratory assays confirmed superior tolerance to low salinity for the northern species, <i>A. modesta</i>: encapsulated embryos developed at 8 ppt, larvae survived at 4-6 ppt, and adults survived repeated exposure to 2 ppt, salinities that reduced development or survival for the same stages of <i>A. willowi</i>. Adults did not appreciably differ in their high-temperature threshold, however. Each species showed increased tolerance to either temperature or salinity stress at its range margin, indicating plasticity or local adaptation, but at the cost of reduced tolerance to the other stressor. At its northern limit, <i>A. willowi</i> became more tolerant of low salinity during the winter rainy season, but also less heat tolerant. Conversely, <i>A. modesta</i> became more heat resistant from spring to summer at its southern limit, but less tolerant of low salinity. Trade-offs in stress tolerance may generally constrain adaptation and limit biotic response to a rapidly changing environment, as well as differentiating species niches.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 1","pages":"105-122"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differential Tolerance and Seasonal Adaptation to Temperature and Salinity Stress at a Dynamic Range Boundary Between Estuarine Gastropods.\",\"authors\":\"Patrick J Krug, Elizabeth Shimer, Valerie A Rodriguez\",\"doi\":\"10.1086/715845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractInsight into how coastal organisms will respond to changing temperature and salinity regimes may be derived from studies of adaptation to fluctuating estuarine environments, especially under stressful range-edge conditions. We characterized a dynamic range boundary between two estuarine sea slugs, <i>Alderia modesta</i> (distributed across the North Pacific and North Atlantic) and <i>Alderia willowi</i>, known from southern and central California. The species overlap from Bodega Bay to San Francisco Bay, where populations are dominated by <i>A. modesta</i> after winter rains but by <i>A. willowi</i> after peak summer temperatures. Laboratory assays confirmed superior tolerance to low salinity for the northern species, <i>A. modesta</i>: encapsulated embryos developed at 8 ppt, larvae survived at 4-6 ppt, and adults survived repeated exposure to 2 ppt, salinities that reduced development or survival for the same stages of <i>A. willowi</i>. Adults did not appreciably differ in their high-temperature threshold, however. Each species showed increased tolerance to either temperature or salinity stress at its range margin, indicating plasticity or local adaptation, but at the cost of reduced tolerance to the other stressor. At its northern limit, <i>A. willowi</i> became more tolerant of low salinity during the winter rainy season, but also less heat tolerant. Conversely, <i>A. modesta</i> became more heat resistant from spring to summer at its southern limit, but less tolerant of low salinity. Trade-offs in stress tolerance may generally constrain adaptation and limit biotic response to a rapidly changing environment, as well as differentiating species niches.</p>\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":\"241 1\",\"pages\":\"105-122\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/715845\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/715845","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Differential Tolerance and Seasonal Adaptation to Temperature and Salinity Stress at a Dynamic Range Boundary Between Estuarine Gastropods.
AbstractInsight into how coastal organisms will respond to changing temperature and salinity regimes may be derived from studies of adaptation to fluctuating estuarine environments, especially under stressful range-edge conditions. We characterized a dynamic range boundary between two estuarine sea slugs, Alderia modesta (distributed across the North Pacific and North Atlantic) and Alderia willowi, known from southern and central California. The species overlap from Bodega Bay to San Francisco Bay, where populations are dominated by A. modesta after winter rains but by A. willowi after peak summer temperatures. Laboratory assays confirmed superior tolerance to low salinity for the northern species, A. modesta: encapsulated embryos developed at 8 ppt, larvae survived at 4-6 ppt, and adults survived repeated exposure to 2 ppt, salinities that reduced development or survival for the same stages of A. willowi. Adults did not appreciably differ in their high-temperature threshold, however. Each species showed increased tolerance to either temperature or salinity stress at its range margin, indicating plasticity or local adaptation, but at the cost of reduced tolerance to the other stressor. At its northern limit, A. willowi became more tolerant of low salinity during the winter rainy season, but also less heat tolerant. Conversely, A. modesta became more heat resistant from spring to summer at its southern limit, but less tolerant of low salinity. Trade-offs in stress tolerance may generally constrain adaptation and limit biotic response to a rapidly changing environment, as well as differentiating species niches.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.