评估贝叶斯分析中数据源的相对贡献,并应用于估计难以到达的人口的规模。

Jacob Parsons, Xiaoyue Niu, Le Bao
{"title":"评估贝叶斯分析中数据源的相对贡献,并应用于估计难以到达的人口的规模。","authors":"Jacob Parsons,&nbsp;Xiaoyue Niu,&nbsp;Le Bao","doi":"10.1515/scid-2019-0020","DOIUrl":null,"url":null,"abstract":"<p><p>When using multiple data sources in an analysis, it is important to understand the influence of each data source on the analysis and the consistency of the data sources with each other and the model. We suggest the use of a retrospective value of information framework in order to address such concerns. Value of information methods can be computationally difficult. We illustrate the use of computational methods that allow these methods to be applied even in relatively complicated settings. In illustrating the proposed methods, we focus on an application in estimating the size of hard to reach populations. Specifically, we consider estimating the number of injection drug users in Ukraine by combining all available data sources spanning over half a decade and numerous sub-national areas in the Ukraine. This application is of interest to public health researchers as this hard to reach population that plays a large role in the spread of HIV. We apply a Bayesian hierarchical model and evaluate the contribution of each data source in terms of absolute influence, expected influence, and level of surprise. Finally we apply value of information methods to inform suggestions on future data collection.</p>","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/scid-2019-0020","citationCount":"2","resultStr":"{\"title\":\"Evaluating the relative contribution of data sources in a Bayesian analysis with the application of estimating the size of hard to reach populations.\",\"authors\":\"Jacob Parsons,&nbsp;Xiaoyue Niu,&nbsp;Le Bao\",\"doi\":\"10.1515/scid-2019-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When using multiple data sources in an analysis, it is important to understand the influence of each data source on the analysis and the consistency of the data sources with each other and the model. We suggest the use of a retrospective value of information framework in order to address such concerns. Value of information methods can be computationally difficult. We illustrate the use of computational methods that allow these methods to be applied even in relatively complicated settings. In illustrating the proposed methods, we focus on an application in estimating the size of hard to reach populations. Specifically, we consider estimating the number of injection drug users in Ukraine by combining all available data sources spanning over half a decade and numerous sub-national areas in the Ukraine. This application is of interest to public health researchers as this hard to reach population that plays a large role in the spread of HIV. We apply a Bayesian hierarchical model and evaluate the contribution of each data source in terms of absolute influence, expected influence, and level of surprise. Finally we apply value of information methods to inform suggestions on future data collection.</p>\",\"PeriodicalId\":74867,\"journal\":{\"name\":\"Statistical communications in infectious diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/scid-2019-0020\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical communications in infectious diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/scid-2019-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/scid-2019-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在分析中使用多个数据源时,了解每个数据源对分析的影响以及数据源之间和模型之间的一致性非常重要。我们建议使用回顾性价值的信息框架来解决这些问题。信息的价值方法在计算上是困难的。我们举例说明了计算方法的使用,即使在相对复杂的设置中也可以应用这些方法。为了说明所提出的方法,我们将重点放在估计难以达到的人口规模的应用上。具体而言,我们考虑通过结合乌克兰超过五年的所有可用数据来源和许多次国家地区来估计乌克兰注射吸毒者的数量。这一应用引起了公共卫生研究人员的兴趣,因为很难接触到在艾滋病毒传播中起重要作用的人群。我们应用贝叶斯层次模型,并根据绝对影响、预期影响和意外程度评估每个数据源的贡献。最后,我们运用信息方法的价值为未来的数据收集提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the relative contribution of data sources in a Bayesian analysis with the application of estimating the size of hard to reach populations.

When using multiple data sources in an analysis, it is important to understand the influence of each data source on the analysis and the consistency of the data sources with each other and the model. We suggest the use of a retrospective value of information framework in order to address such concerns. Value of information methods can be computationally difficult. We illustrate the use of computational methods that allow these methods to be applied even in relatively complicated settings. In illustrating the proposed methods, we focus on an application in estimating the size of hard to reach populations. Specifically, we consider estimating the number of injection drug users in Ukraine by combining all available data sources spanning over half a decade and numerous sub-national areas in the Ukraine. This application is of interest to public health researchers as this hard to reach population that plays a large role in the spread of HIV. We apply a Bayesian hierarchical model and evaluate the contribution of each data source in terms of absolute influence, expected influence, and level of surprise. Finally we apply value of information methods to inform suggestions on future data collection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study design approaches for future active-controlled HIV prevention trials. The role of randomization inference in unraveling individual treatment effects in early phase vaccine trials. Nonlinear mixed-effects models for HIV viral load trajectories before and after antiretroviral therapy interruption, incorporating left censoring. Estimation and interpretation of vaccine efficacy in COVID-19 randomized clinical trials Sample size calculation for active-arm trial with counterfactual incidence based on recency assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1