Sylvester M Sefa-Yeboah, Kwabena Osei Annor, Valencia J Koomson, Firibu K Saalia, Matilda Steiner-Asiedu, Godfrey A Mills
{"title":"基于人工智能技术的肥胖自我管理移动应用平台的开发","authors":"Sylvester M Sefa-Yeboah, Kwabena Osei Annor, Valencia J Koomson, Firibu K Saalia, Matilda Steiner-Asiedu, Godfrey A Mills","doi":"10.1155/2021/6624057","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a major global health challenge and a risk factor for the leading causes of death, including heart disease, stroke, diabetes, and several types of cancer. Attempts to manage and regulate obesity have led to the implementation of various dietary regulatory initiatives to provide information on the calorie contents of meals. Although knowledge of the calorie content is useful for meal planning, it is not sufficient as other factors, including health status (diabetes, hypertension, etc.) and level of physical activity, are essential in the decision process for obesity management. In this work, we present an artificial intelligence- (AI-) based application that is driven by a genetic algorithm (GA) as a potential tool for tracking a user's energy balance and predicting possible calorie intake required to meet daily calorie needs for obesity management. The algorithm takes the users' input information on desired foods which are selected from a database and extracted records of users on cholesterol level, diabetes status, and level of physical activity, to predict possible meals required to meet the users need. The micro- and macronutrients of food content are used for the computation and prediction of the potential foods required to meet the daily calorie needs. The functionality and performance of the model were tested using a sample of 30 volunteers from the University of Ghana. Results revealed that the model was able to predict both glycemic and non-glycemic foods based on the condition of the user as well as the macro- and micronutrients requirements. Moreover, the system is able to adequately track the progress of the user's weight loss over time, daily nutritional needs, daily calorie intake, and predictions of meals that must be taken to avoid compromising their health. The proposed system can serve as a useful resource for individuals, dieticians, and other health management personnel for managing obesity, patients, and for training students in fields of dietetics and consumer science.</p>","PeriodicalId":45630,"journal":{"name":"International Journal of Telemedicine and Applications","volume":"2021 ","pages":"6624057"},"PeriodicalIF":3.1000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416398/pdf/","citationCount":"4","resultStr":"{\"title\":\"Development of a Mobile Application Platform for Self-Management of Obesity Using Artificial Intelligence Techniques.\",\"authors\":\"Sylvester M Sefa-Yeboah, Kwabena Osei Annor, Valencia J Koomson, Firibu K Saalia, Matilda Steiner-Asiedu, Godfrey A Mills\",\"doi\":\"10.1155/2021/6624057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is a major global health challenge and a risk factor for the leading causes of death, including heart disease, stroke, diabetes, and several types of cancer. Attempts to manage and regulate obesity have led to the implementation of various dietary regulatory initiatives to provide information on the calorie contents of meals. Although knowledge of the calorie content is useful for meal planning, it is not sufficient as other factors, including health status (diabetes, hypertension, etc.) and level of physical activity, are essential in the decision process for obesity management. In this work, we present an artificial intelligence- (AI-) based application that is driven by a genetic algorithm (GA) as a potential tool for tracking a user's energy balance and predicting possible calorie intake required to meet daily calorie needs for obesity management. The algorithm takes the users' input information on desired foods which are selected from a database and extracted records of users on cholesterol level, diabetes status, and level of physical activity, to predict possible meals required to meet the users need. The micro- and macronutrients of food content are used for the computation and prediction of the potential foods required to meet the daily calorie needs. The functionality and performance of the model were tested using a sample of 30 volunteers from the University of Ghana. Results revealed that the model was able to predict both glycemic and non-glycemic foods based on the condition of the user as well as the macro- and micronutrients requirements. Moreover, the system is able to adequately track the progress of the user's weight loss over time, daily nutritional needs, daily calorie intake, and predictions of meals that must be taken to avoid compromising their health. The proposed system can serve as a useful resource for individuals, dieticians, and other health management personnel for managing obesity, patients, and for training students in fields of dietetics and consumer science.</p>\",\"PeriodicalId\":45630,\"journal\":{\"name\":\"International Journal of Telemedicine and Applications\",\"volume\":\"2021 \",\"pages\":\"6624057\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416398/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Telemedicine and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6624057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Telemedicine and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6624057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Development of a Mobile Application Platform for Self-Management of Obesity Using Artificial Intelligence Techniques.
Obesity is a major global health challenge and a risk factor for the leading causes of death, including heart disease, stroke, diabetes, and several types of cancer. Attempts to manage and regulate obesity have led to the implementation of various dietary regulatory initiatives to provide information on the calorie contents of meals. Although knowledge of the calorie content is useful for meal planning, it is not sufficient as other factors, including health status (diabetes, hypertension, etc.) and level of physical activity, are essential in the decision process for obesity management. In this work, we present an artificial intelligence- (AI-) based application that is driven by a genetic algorithm (GA) as a potential tool for tracking a user's energy balance and predicting possible calorie intake required to meet daily calorie needs for obesity management. The algorithm takes the users' input information on desired foods which are selected from a database and extracted records of users on cholesterol level, diabetes status, and level of physical activity, to predict possible meals required to meet the users need. The micro- and macronutrients of food content are used for the computation and prediction of the potential foods required to meet the daily calorie needs. The functionality and performance of the model were tested using a sample of 30 volunteers from the University of Ghana. Results revealed that the model was able to predict both glycemic and non-glycemic foods based on the condition of the user as well as the macro- and micronutrients requirements. Moreover, the system is able to adequately track the progress of the user's weight loss over time, daily nutritional needs, daily calorie intake, and predictions of meals that must be taken to avoid compromising their health. The proposed system can serve as a useful resource for individuals, dieticians, and other health management personnel for managing obesity, patients, and for training students in fields of dietetics and consumer science.
期刊介绍:
The overall aim of the International Journal of Telemedicine and Applications is to bring together science and applications of medical practice and medical care at a distance as well as their supporting technologies such as, computing, communications, and networking technologies with emphasis on telemedicine techniques and telemedicine applications. It is directed at practicing engineers, academic researchers, as well as doctors, nurses, etc. Telemedicine is an information technology that enables doctors to perform medical consultations, diagnoses, and treatments, as well as medical education, away from patients. For example, doctors can remotely examine patients via remote viewing monitors and sound devices, and/or sampling physiological data using telecommunication. Telemedicine technology is applied to areas of emergency healthcare, videoconsulting, telecardiology, telepathology, teledermatology, teleophthalmology, teleoncology, telepsychiatry, teledentistry, etc. International Journal of Telemedicine and Applications will highlight the continued growth and new challenges in telemedicine, applications, and their supporting technologies, for both application development and basic research. Papers should emphasize original results or case studies relating to the theory and/or applications of telemedicine. Tutorial papers, especially those emphasizing multidisciplinary views of telemedicine, are also welcome. International Journal of Telemedicine and Applications employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.