{"title":"弗雷德里克·班廷的真正伟大的想法:胎牛胰岛在发现胰岛素中的作用。","authors":"James R Wright","doi":"10.1080/19382014.2021.1963188","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Frederick Banting approached Toronto physiology professor JJR Macleod with a way to prevent pancreatic trypsin from destroying the pancreas' internal secretion. Banting proposed to induce exocrine atrophy by ligating canine pancreatic ducts and to use extracts of islet-rich residua to treat pancreatectomized dogs. His next plan was to make extracts from fetal pancreas, which he had read was islet-rich and lacked exocrine tissue capable of making trypsin; this work has not been historically evaluated.</p><p><strong>Methods: </strong>Banting's fetal calf pancreas story is told using primary and secondary historical sources and then critically examined using both historical and recent data on species phylogeny, islet ontogeny, fetal/neonatal islet culture/transplantation, etc. Results/Discussion: Only ruminants develop dual islets populations sequentially; fetal calf pancreata, at the gestational ages Banting used, possess numerous insulin-rich giant peri-lobular islets, which credibly explain the potency of his fetal calf insulin extract. Use of non-ruminant fetal pancreata would have failed.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"13 5-6","pages":"121-133"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/6c/KISL_13_1963188.PMC8528409.pdf","citationCount":"5","resultStr":"{\"title\":\"Frederick Banting's actual great idea: The role of fetal bovine islets in the discovery of insulin.\",\"authors\":\"James R Wright\",\"doi\":\"10.1080/19382014.2021.1963188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Frederick Banting approached Toronto physiology professor JJR Macleod with a way to prevent pancreatic trypsin from destroying the pancreas' internal secretion. Banting proposed to induce exocrine atrophy by ligating canine pancreatic ducts and to use extracts of islet-rich residua to treat pancreatectomized dogs. His next plan was to make extracts from fetal pancreas, which he had read was islet-rich and lacked exocrine tissue capable of making trypsin; this work has not been historically evaluated.</p><p><strong>Methods: </strong>Banting's fetal calf pancreas story is told using primary and secondary historical sources and then critically examined using both historical and recent data on species phylogeny, islet ontogeny, fetal/neonatal islet culture/transplantation, etc. Results/Discussion: Only ruminants develop dual islets populations sequentially; fetal calf pancreata, at the gestational ages Banting used, possess numerous insulin-rich giant peri-lobular islets, which credibly explain the potency of his fetal calf insulin extract. Use of non-ruminant fetal pancreata would have failed.</p>\",\"PeriodicalId\":14671,\"journal\":{\"name\":\"Islets\",\"volume\":\"13 5-6\",\"pages\":\"121-133\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/6c/KISL_13_1963188.PMC8528409.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Islets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19382014.2021.1963188\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Islets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19382014.2021.1963188","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Frederick Banting's actual great idea: The role of fetal bovine islets in the discovery of insulin.
Background: Frederick Banting approached Toronto physiology professor JJR Macleod with a way to prevent pancreatic trypsin from destroying the pancreas' internal secretion. Banting proposed to induce exocrine atrophy by ligating canine pancreatic ducts and to use extracts of islet-rich residua to treat pancreatectomized dogs. His next plan was to make extracts from fetal pancreas, which he had read was islet-rich and lacked exocrine tissue capable of making trypsin; this work has not been historically evaluated.
Methods: Banting's fetal calf pancreas story is told using primary and secondary historical sources and then critically examined using both historical and recent data on species phylogeny, islet ontogeny, fetal/neonatal islet culture/transplantation, etc. Results/Discussion: Only ruminants develop dual islets populations sequentially; fetal calf pancreata, at the gestational ages Banting used, possess numerous insulin-rich giant peri-lobular islets, which credibly explain the potency of his fetal calf insulin extract. Use of non-ruminant fetal pancreata would have failed.
期刊介绍:
Islets is the first international, peer-reviewed research journal dedicated to islet biology. Islets publishes high-quality clinical and experimental research into the physiology and pathology of the islets of Langerhans. In addition to original research manuscripts, Islets is the leading source for cutting-edge Perspectives, Reviews and Commentaries.
Our goal is to foster communication and a rapid exchange of information through timely publication of important results using print as well as electronic formats.