{"title":"利用高维常微分方程识别潜伏HIV-1再激活过程中的动态基因调控网络。","authors":"Jaejoon Song, Michelle Carey, Hongjian Zhu, Hongyu Miao, Juan Camilo Ramírez, Hulin Wu","doi":"10.1504/ijcbdd.2018.10011910","DOIUrl":null,"url":null,"abstract":"<p><p>Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"11 1-2","pages":"135-153"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442249/pdf/nihms-1727634.pdf","citationCount":"1","resultStr":"{\"title\":\"Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations.\",\"authors\":\"Jaejoon Song, Michelle Carey, Hongjian Zhu, Hongyu Miao, Juan Camilo Ramírez, Hulin Wu\",\"doi\":\"10.1504/ijcbdd.2018.10011910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"11 1-2\",\"pages\":\"135-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442249/pdf/nihms-1727634.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcbdd.2018.10011910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2018.10011910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations.
Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.