利用高维常微分方程识别潜伏HIV-1再激活过程中的动态基因调控网络。

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2018-01-01 Epub Date: 2018-03-28 DOI:10.1504/ijcbdd.2018.10011910
Jaejoon Song, Michelle Carey, Hongjian Zhu, Hongyu Miao, Juan Camilo Ramírez, Hulin Wu
{"title":"利用高维常微分方程识别潜伏HIV-1再激活过程中的动态基因调控网络。","authors":"Jaejoon Song,&nbsp;Michelle Carey,&nbsp;Hongjian Zhu,&nbsp;Hongyu Miao,&nbsp;Juan Camilo Ramírez,&nbsp;Hulin Wu","doi":"10.1504/ijcbdd.2018.10011910","DOIUrl":null,"url":null,"abstract":"<p><p>Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"11 1-2","pages":"135-153"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442249/pdf/nihms-1727634.pdf","citationCount":"1","resultStr":"{\"title\":\"Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations.\",\"authors\":\"Jaejoon Song,&nbsp;Michelle Carey,&nbsp;Hongjian Zhu,&nbsp;Hongyu Miao,&nbsp;Juan Camilo Ramírez,&nbsp;Hulin Wu\",\"doi\":\"10.1504/ijcbdd.2018.10011910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"11 1-2\",\"pages\":\"135-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442249/pdf/nihms-1727634.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcbdd.2018.10011910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2018.10011910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

重新激活潜伏感染的细胞已成为根除艾滋病毒的重要策略。然而,重新激活后的遗传调控机制仍不清楚。我们用高维常微分方程描述了一个五步管道来研究病毒再激活后基因调控网络的动力学。我们的管道实现了五种不同方法的组合,通过检测时间差异表达基因(步骤1),将具有相似时间表达模式的基因聚类到少数响应模块(步骤2),在每个基因响应模块内进行功能富集分析(步骤3),使用常微分方程(ODE)和高维变量选择技术确定基于基因响应模块的网络结构(步骤4),并使用非线性最小二乘法获得基于精细参数估计的基因调控模型(步骤5)。我们将我们的管道应用于潜伏感染的t细胞在潜伏期逆转后的时间过程基因表达数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations.

Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1