{"title":"抗聚六亚甲基双胍类盐酸真菌紫丁香紫霉的分离与鉴定。","authors":"Takako Yamamoto, Yikelamu Alimu, Hiroki Takahashi, Yoko Kusuya, Kouichi Hosoya, Naofumi Shigemune, Satoshi Nagai, Takashi Yaguchi","doi":"10.4265/bio.26.157","DOIUrl":null,"url":null,"abstract":"<p><p>We isolated a fungus from a 20% (= 200,000 µg/mL) aqueous solution of polyhexamethylene biguanide hydrochloride (PHMB), a widely used antimicrobial and examined its morphology and drug resistance profile. Based on the sequence of the internal transcribed spacer region of ribosomal DNA, the fungus was identified as Purpureocillium lilacinum. Although the P. lilacinum type and resistant strains showed similar morphology, the latter had extremely low PHMB susceptibility and was able to grow in 20% aqueous solution of PHMB, which eliminated the type strain. The minimum inhibitory concentration (MIC) of PHMB for the resistant strain was significantly higher than that of the type strain and other pathogenic filamentous fungi and yeasts. The susceptibility to antimicrobial agents and antifungal agents other than PHMB was similar to that of the type strain, therefore the drug resistance of the isolate was specific to PHMB. Furthermore, we sequenced the genome of the isolate to predict PHMB resistance-related genes. Despite its high resistance to PHMB, no well-known genes homologous to fungal PHMB-resistant genes were detected in the genome of the resistant strain. In summary, P. lilacinum was found to be significantly more resistant to PHMB than previously reported, via an unidentified mechanism of drug resistance.</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and Characterization of the Polyhexamethylene Biguanide Hydrochloride-Resistant Fungus, Purpureocillium lilacinum.\",\"authors\":\"Takako Yamamoto, Yikelamu Alimu, Hiroki Takahashi, Yoko Kusuya, Kouichi Hosoya, Naofumi Shigemune, Satoshi Nagai, Takashi Yaguchi\",\"doi\":\"10.4265/bio.26.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We isolated a fungus from a 20% (= 200,000 µg/mL) aqueous solution of polyhexamethylene biguanide hydrochloride (PHMB), a widely used antimicrobial and examined its morphology and drug resistance profile. Based on the sequence of the internal transcribed spacer region of ribosomal DNA, the fungus was identified as Purpureocillium lilacinum. Although the P. lilacinum type and resistant strains showed similar morphology, the latter had extremely low PHMB susceptibility and was able to grow in 20% aqueous solution of PHMB, which eliminated the type strain. The minimum inhibitory concentration (MIC) of PHMB for the resistant strain was significantly higher than that of the type strain and other pathogenic filamentous fungi and yeasts. The susceptibility to antimicrobial agents and antifungal agents other than PHMB was similar to that of the type strain, therefore the drug resistance of the isolate was specific to PHMB. Furthermore, we sequenced the genome of the isolate to predict PHMB resistance-related genes. Despite its high resistance to PHMB, no well-known genes homologous to fungal PHMB-resistant genes were detected in the genome of the resistant strain. In summary, P. lilacinum was found to be significantly more resistant to PHMB than previously reported, via an unidentified mechanism of drug resistance.</p>\",\"PeriodicalId\":8777,\"journal\":{\"name\":\"Biocontrol science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4265/bio.26.157\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.26.157","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isolation and Characterization of the Polyhexamethylene Biguanide Hydrochloride-Resistant Fungus, Purpureocillium lilacinum.
We isolated a fungus from a 20% (= 200,000 µg/mL) aqueous solution of polyhexamethylene biguanide hydrochloride (PHMB), a widely used antimicrobial and examined its morphology and drug resistance profile. Based on the sequence of the internal transcribed spacer region of ribosomal DNA, the fungus was identified as Purpureocillium lilacinum. Although the P. lilacinum type and resistant strains showed similar morphology, the latter had extremely low PHMB susceptibility and was able to grow in 20% aqueous solution of PHMB, which eliminated the type strain. The minimum inhibitory concentration (MIC) of PHMB for the resistant strain was significantly higher than that of the type strain and other pathogenic filamentous fungi and yeasts. The susceptibility to antimicrobial agents and antifungal agents other than PHMB was similar to that of the type strain, therefore the drug resistance of the isolate was specific to PHMB. Furthermore, we sequenced the genome of the isolate to predict PHMB resistance-related genes. Despite its high resistance to PHMB, no well-known genes homologous to fungal PHMB-resistant genes were detected in the genome of the resistant strain. In summary, P. lilacinum was found to be significantly more resistant to PHMB than previously reported, via an unidentified mechanism of drug resistance.
期刊介绍:
The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.